In this paper spatial dynamics of the Beddington-DeAngelis predator-prey model is investigated. We analyze the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the amplitude equations and determine the stability of different patterns. In Turing space, we found that this model has coexistence of H(0) hexagon patterns and stripe patterns, H(π) hexagon patterns, and H(0) hexagon patterns. To better describe the real ecosystem, we consider the ecosystem as an open system and take the environmental noise into account. It is found that noise can decrease the number of the patterns and make the patterns more regular. What is more, noise can induce two kinds of typical pattern transitions. One is from the H(π) hexagon patterns to the regular stripe patterns, and the other is from the coexistence of H(0) hexagon patterns and stripe patterns to the regular stripe patterns. The obtained results enrich the finding in the Beddington-DeAngelis predator-prey model well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.