CARM1 is a cancer-relevant protein arginine methyltransferase that regulates many aspects of transcription. Its pharmacological inhibition is a promising anti-cancer strategy. Here SKI-73 (6a in this work) is presented as a CARM1 chemical probe with pro-drug properties. SKI-73 (6a) can rapidly penetrate cell membranes and then be processed into active inhibitors, which are retained intracellularly with 10-fold enrichment for several days. These compounds were characterized for their potency, selectivity, modes of action, and on-target engagement. SKI-73 (6a) recapitulates the effect of CARM1 knockout against breast cancer cell invasion. Single-cell RNA-seq analysis revealed that the SKI-73(6a)-associated reduction of invasiveness acts by altering epigenetic plasticity and suppressing the invasion-prone subpopulation. Interestingly, SKI-73 (6a) and CARM1 knockout alter the epigenetic plasticity with remarkable difference, suggesting distinct modes of action for small-molecule and genetic perturbations. We therefore discovered a CARM1-addiction mechanism of cancer metastasis and developed a chemical probe to target this process.
Highlights d Developed a compact minimally invasive photoaffinity ATP (mipATP) probe d mipATP retains the signaling functions of native ATP in vivo and in vitro
CARM1 is a cancer-relevant protein arginine methyltransferase that regulates many aspects of transcription. Its pharmacological inhibition is a promising anti-cancer strategy. Here SKI-73 is presented as a CARM1 chemical probe with pro-drug properties. SKI-73 can rapidly penetrate cell membranes and then be processed into active inhibitors, which are retained intracellularly with 10fold enrichment for days. These compounds were characterized for their potency, selectivity, modes of action, and on-target engagement. SKI-73 recapitulates the effect of CARM1 knockout against breast cancer cell invasion. Single-cell RNA-seq analysis revealed that the SKI-73-associated reduction of invasiveness act via altering epigenetic plasticity and suppressing the invasion-prone subpopulation. Interestingly, SKI-73 and CARM1 knockout alter the epigenetic plasticity with remarkable difference, arguing distinct modes of action between the small-molecule and genetic perturbation. We therefore discovered a CARM1-addiction mechanism of cancer metastasis and developed a chemical probe to target this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.