We present an innovative approach for a Cybersecurity Solution based on the Intrusion Detection System to detect malicious activity targeting the Distributed Network Protocol (DNP3) layers in the Supervisory Control and Data Acquisition (SCADA) systems. As Information and Communication Technology is connected to the grid, it is subjected to both physical and cyber-attacks because of the interaction between industrial control systems and the outside Internet environment using IoT technology. Often, cyber-attacks lead to multiple risks that affect infrastructure and business continuity; furthermore, in some cases, human beings are also affected. Because of the traditional peculiarities of process systems, such as insecure real-time protocols, end-to-end general-purpose ICT security mechanisms are not able to fully secure communication in SCADA systems. In this paper, we present a novel method based on the DNP3 vulnerability assessment and attack model in different layers, with feature selection using Machine Learning from parsed DNP3 protocol with additional data including malware samples. Moreover, we developed a cyber-attack algorithm that included a classification and visualization process. Finally, the results of the experimental implementation show that our proposed Cybersecurity Solution based on IDS was able to detect attacks in real time in an IoT-based Smart Grid communication environment.
In the age of the Internet of Things, connected devices are changing the delivery system in the healthcare communication environment. With the integration of IoT in healthcare, there is a huge potential for improvement of the quality, safety, and efficiency of health care in addition to promising technological, economical, and social prospects. Nevertheless, this integration comes with security risks such as data breach that might be caused by credential-stealing malware. In addition, the patient valuable data can be disclosed when the perspective devices are compromised since they are connected to the internet. Hence, security has become an essential part of today’s computing world regarding the ubiquitous nature of the IoT entities in general and IoT-based healthcare in particular. In this paper, research on the algorithm for anonymizing sensitive information about health data set exchanged in the IoT environment using a wireless communication system has been presented. To preserve the security and privacy, during the data session from the users interacting online, the algorithm defines records that cannot be revealed by providing protection to user’s privacy. Moreover, the proposed algorithm includes a secure encryption process that enables health data anonymity. Furthermore, we have provided an analysis using mathematical functions to valid the algorithm’s anonymity function. The results show that the anonymization algorithm guarantees safety features for the considered IoT system applied in context of the healthcare communication systems.
Abstract-Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centres located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The rapid growth in field of "cloud computing" also increases severe security concerns. Security has remained a constant issue for Open Systems and internet, when we are talking about security, cloud really suffers. Lack of security is the only hurdle in wide adoption of cloud computing. Cloud computing is surrounded by many security issues like securing data and examining the utilization of cloud by the cloud computing vendors. This paper proposes a scheme to securely store and access of data via internet. We have used ECC based PKI for certificate procedure because the use of ECC significantly reduces the computation cost, message size and transmission overhead over RSA based PKI as 160-bit key size in ECC provides comparable security with 1024-bit key in RSA. We have designed Secured Cloud Storage Framework (SCSF) . In this framework, users not only can securely store and access data in cloud but also can share data with multiple users through the unsecure internet in a secured way. This scheme can ensure the security and privacy of the data in the cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.