Genome shuffling was used to improve the thermotolerance of L: -glutamic acid-producing strain Corynebacteria glutamicum. Five strains with subtle improvements in high temperature tolerance and productivity were selected by ultraviolet irradiation and diethyl sulfate mutagenesis. An improved strain (F343) was obtained by three rounds of genome shuffling of the five strains as mentioned above. The cell density of F343 was four times higher than that of ancestor strains after 24 h of cultivation at 44°C, and importantly, the yield of L: -glutamic acid was increased by 1.8-times comparing with that of the ancestor strain at 38°C in a 5-L fermentor. With glucose supplement and two-stage pH control, the L: -glutamate acid concentration of F343 reached 119 g/L after fermentation for 30 h. The genetic diversity between F343 and its ancestors was also evaluated by amplified fragment length polymorphism analysis. Results suggest that the phenotypes for both thermotolerance and L: -glutamic acid production in F343 were evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.