Aim: To investigate whether down-regulation of peroxiredoxin 1 (Prx1) and/or peroxiredoxin 5 (Prx5) sensitizes human esophageal cancer cells to ionizing radiation (IR). Methods: Human esophageal carcinoma cell lines Eca-109 and TE-1 were used. Prx mRNA expression profiles in Eca-109 and TE-1 cells were determined using RT-PCR. Two highly expressed isoforms of Prxs, Prx1 and Prx5, were silenced by RNA interference (RNAi). Following IR, intracellular reactive oxygen species (ROS) and apoptosis were measured using flow cytometry, the activities of catalase, superoxide dismutase and glutathione peroxidase were measured, and the radiosensitizing effect of RNAi was observed. Tumor xenograft model was also used to examine the radiosensitizing effect of RNAi in vivo. Results: Down-regulation of Prx1 and/or Prx5 by RNAi does not alter the activities of catalase, superoxide dismutase and glutathione peroxidase, but made human tumor cells more sensitive to IR-induced apoptosis both in vitro and in vivo. When the two isoforms were decreased simultaneously, intracellular ROS and apoptosis significantly increased after IR. Conclusion: Silencing Prx1 and/or Prx5 by RNAi sensitizes human Eca-109 and TE-1 cells to IR, and the intracellular ROS accumulation may contribute to the radiosensitizing effect of the RNAi.
ABSTRACT. Previous studies have found that the vaccinia related kinase 2 gene (VRK2) polymorphism was associated with schizophrenia (SCZ) in the worldwide population. This association was further supported by VRK2 mRNA expression patterns and brain structure variations. Here, we analyzed four single nucleotide polymorphisms (SNPs) of the VRK2 gene in a total population of 893 samples, consisting of 360 patients with SCZ and 533 healthy controls of Han Chinese descent using the SNPscan method. Single SNP, haplotype, and gender-specific association analyses were performed. We found that rs3732136 was significantly associated with SCZ (P = 0.042; odds ratio = 1.25; 95% confidence interval = 1.01-1.55). Further genotype and haplotype association analyses suggested a similar pattern. Our data provide preliminary evidence that the VRK2 gene might play a 9404-9411 (2015) major role in the development of SCZ in the Northwest Chinese Han population.
IntroductionPrevious studies have indicated a possible role of histidine triad nucleotide‐binding protein 1 (HINT1) on sustaining the regulatory crosstalk of N‐methyl‐D‐aspartate acid glutamate receptors (NMDARs) and G‐protein‐coupled receptors (GPCRs) such as the μ‐opioid receptor (MOR). Both receptors are present in the midbrain periaqueductal gray neurons, an area that plays a central role in the supraspinal antinociceptive process.MethodsIn the present study, a battery of pain‐related behavioral experiments was applied to Hint1 knockout, heterozygous and wild‐type mice. Both the male and female mice were investigated to assess the differences between genders.Results
Hint1−/− mice presented significant shorter latency at 50°C in both male and female in hot plate test while no significant difference was found in tail filck test. In Von Frey hairs test Hint1−/− mice were more sensitive than Hint1+/+ mice, presenting a lower withdrawal threshold and enhanced relative frequency of paw withdrawal. The average flinches and licking time of Hint1−/− mice were more than that of Hint1+/+ mice in formalin test.ConclusionThe absence of Hint1 gene‐enhanced supraspinal nociceptive sensitivity in mice, including thermal, mechanical and inflammatory hyperalgesia. Meanwhile, there was no certain evidence indicating the haploinsufficiency and gender differences of Hint1 gene in pain‐related behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.