Kashin-Beck disease (KBD) is a chronic endemic osteoarthropathy, which mainly occurs in West and Northeast China. Epidemiological studies suggest that Se deficiency is an important environmental factor for the incidence of KBD. Glutathione peroxidase 4 (GPx4) belongs to the glutathione peroxidase family, which is crucial for optimal antioxidant defences. Our purpose is to investigate the putative association between GPx4 polymorphisms and the risk of KBD. Restriction fragment length polymorphism-PCR was used to detect two SNP (rs713041, rs4807542) in 219 cases and 194 controls in Han Chinese subjects, and quantitative analysis for the GPx4 mRNA level was performed by the real-time PCR method. The results revealed that linkage disequilibrium existed in the two SNP. A significant difference was observed in the haplotype A-T (P¼0·0066) of GPx4, which was obviously lower in the KBD cases (0·006 v. 0·032 %). Correlation analysis based on a single locus showed no association between each SNP and KBD risk. Furthermore, the GPx4 mRNA level was dramatically lower in the blood of KBD patients. Overall, our finding indicated GPx4 polymorphisms and decreased mRNA level may be related to the development of KBD in the Chinese population, suggesting GPx4 as a possible candidate susceptibility gene for KBD.
This paper discussed the principle of the ozone wind imaging interferometer developed by our group, which used remote sensing method to detect wind field and ozone concentration simultaneously, focused on the analysis and calculation of the instrument visibility and gave the theoretical representation of the instrument visibility. Computer simulation was used to analyze the influence of the system transmittance, compensation glass surface tilt and mirror surface accuracy on the instrument visibility. The results showed that the splitting ratio of the beam splitter and the field of view would affect the distribution of the instrument visibility; the tilt angle of the compensation glass surface can greatly affect the instrument visibility. We also gave the random error range of wind field speed and temperature at the instrument visibility U > 9. This research provides an important theoretical basis and practical guidance for the development and engineering of ozone wind imaging interferometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.