The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e(2), accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics.
Topological insulators (TIs) are quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The most challenging problem faced by current investigations of these materials is the existence of signifi cant bulk conduction. Here we show how the band structure of topological insulators can be engineered by molecular beam epitaxy growth of (Bi 1 − x Sb x ) 2 Te 3 ternary compounds. The topological surface states are shown to exist over the entire composition range of (Bi 1 − x Sb x ) 2 Te 3 , indicating the robustness of bulk Z 2 topology. Most remarkably, the band engineering leads to ideal TIs with truly insulating bulk and tunable surface states across the Dirac point that behave like one-quarter of graphene. This work demonstrates a new route to achieving intrinsic quantum transport of the topological surface states and designing conceptually new topologically insulating devices based on wellestablished semiconductor technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.