In this study, Ni or Co + Ni bonded NbC matrix cermets with secondary carbides (Mo2C and WC) as well as Ti(C0.5N0.5) were prepared by liquid phase sintering at 1450°C in vacuum. Detailed microstructural investigation was performed by SEM, EPMA and XRD analysis. The microstructure, mechanical properties as well as the C45 (HB140) steel turning performance of the cermets were investigated, and compared with a commercial Ti(C0.5N0.5) based cutting insert. The sintering results indicated that the partial substitution of NbC by Ti(C0.5N0.5) had a significant effect on the core-rim microstructure and refinement of NbC solution grains, as well as improved mechanical properties of the NbC-Ti(C0.5N0.5) cermets. The phase constitution and composition of the cermets were supported by thermodynamic equilibrium calculations. All sintered cermets were composed of a fcc solid solution metal binder and a cubic core-rim (Nb,Ti,Mo,W)(C,N) solution phase, as well as an independent Nrich Ti(C,N) phase. The NbC-Ti(C0.5N0.5) and Ti(C0.5N0.5) matrix cermets had a comparable HV30 of 1500-1600 kg/mm 2 and a similar fracture toughness of 8.0 MPa m 1/2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.