In this paper, we demonstrated the synthesis and electrochemical properties of carbon foams for use as supercapacitor electrode materials. Carbon foams were prepared by double templating method in which emulsion and nanosilica were used as soft template and hard template, respectively. By using Span 80 and Tween 80 as emulsifiers, resorcinol/formaldehyde aqueous solution which contained nanosilica as aqueous phase and 1iquid paraffin as oil phase, an O/W emulsion was obtained. Carbon foams were obtained by emulsion polymerization, carbonization and the subsequent removal of the hard template. The as-prepared carbon foams were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analyzer, and electrochemical workstation. The results indicate that the resultant carbon foams have specific surface area of 160 m2/g, total pore volume of 0.15 cm3/g and possess dual pore size distributions with macropore sizes of 0.5-2.0 μm and the most probable pore size of 4.1 nm. The electrochemical properties of the carbon foams have been investigated by cyclic voltammetry (CV) and galvanostatic charge- discharge with a three-electrode system in electrolyte of 6 mol/L KOH solution. The CV curves of the carbon foams show rectangular-like shape without obvious oxidation-reduction evolution peak, which suggests a typical nonfaradic adsorption/desorption reaction. The carbon foams present linear galvanostatic charge-discharge curve under the current densities of 1.0-5.0 A/g and their specific capacitance values are 60-90 F/g. The good electrochemical performances of carbon foams would provide candidate as electrode materials for supercapacitors.
In this paper, we demonstrated the synthesis and electrochemical properties of macro-/ microporous carbon foams (MMCFs) for application as supercapacitor electrode materials. By using Span 80 and Tween 80 as emulsifiers, resorcinol/formaldehyde solution as aqueous phase, and 1iquid paraffin as oil phase, an O/W emulsion was obtained. Macroporous carbon foams were prepared by the polymerization of the emulsion, followed by drying and carbonization. The macroporous carbon foams then were activated at 1273 K by using KOH as an activated agent to obtain MMCFs. The resultant MMCFs were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyzer. The results indicate that the MMCFs have specific surface areas of 529-670 m2/g, total pore volumes of 0.27-0.33 cm3/g and possess dual pore size distributions with macropore sizes of 0.5-5.0 μm and micropore sizes of 1.72-1.86 nm dependent on the specific experiment parameters. The hierarchical pore structure is propitious to decreases the diffusion resistance of electrolyte and accelerate the ion transfer within the pore channel, and thus improve the electrochemical properties of MMCFs. The electrochemical properties of the MMCFs have been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge with a three-electrode system in electrolyte of 6 mol/L KOH solution. The CV curves of the MMCFs show quite rectangular curve shape without observation of obvious oxidation-reduction evolution peaks, suggesting a typical nonfaradic adsorption/desorption reaction. The MMCFs present linear galvanostatic charge-discharge curve under the current densities of 1.0-4.0 A/g and their specific capacitance values are 89-110 F/g. The MMCFs has good electrochemical performance and they are good candidates as electrode materials for supercapacitors.
The current constructional project have significant influence on the traffic system in the evaluation scope by TIA, the modification of the regulatory detailed plan and the plan conditions proposed is impossible for its characteristic of ex-post evaluation. Thus the effectiveness of TIA is greatly reduced. This paper discusses this issue and puts part of the content of TIA upward into regulatory plan stage. The focus and content of each stage can be clearly assigned by the integration of comprehensive transportation system plan in master plan, TIA in regulatory plan, TIA in constructional detail plan and project design. Furthermore, the paper introduces the measure which was put forward in urban comprehensive transportation plan of Bayuquan District in Yingkou City and TIA was applied in regulatory plan of Wanghai new District. By improving the method and testing the effects, the role of TIA can be further enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.