This paper designs a measurement system of energy consumption for clothes model controlled by robot technology, the system uses DC motor regulated by PWM regulator to drive the worm wheel reducer and the sinusoidal mechanism, then to drive the robot legs to swing forward and backward in sinusoidal step. The sensors detect the rotation speed and torque of the sinusoidal mechanism, the power and energy consumption. The experiments show the system is high in accuracy, excellent in repetition, and suitable for the further research on the principle and evaluation system of the clothes energy consumption.
The paper presents the measurement system of the air plane fuel mass consisting of cylinder shell resonating density meter and double cylinders capacitance level meter. The finite element analysis method of ANSYS10.0 is used to analyze the performance of cylinder shell resonator density meter and double cylinders capacitance fuel level sensor. On the base of simulation, the cylinder shell is 45mm in length, 9mm in radius, and 0.08mm in thickness, the material is 3J53; the double cylinders capacitance is 8mm in inside diameter, 23.6mm in outside diameter, and 550 mm in length. The experiments show the uncertainty of cylinder shell resonating density meter is only 0.12%, the uncertainty of double cylinders capacitance level meter is only 0.2%, and the uncertainty of the fuel mass measurement system is 0.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.