We investigate the optimal quantum state for an atomic gyroscope based on a three-site Bose-Hubbard model. In previous studies, various states such as the uncorrelated state, the BAT state and the NOON state are employed as the probe states to estimate the phase uncertainty. In this article, we present a Hermitian operator
H
and an equivalent unitary parametrization transformation to calculate the quantum Fisher information for any initial states. Exploiting this equivalent unitary parametrization transformation, we can seek the optimal state that gives the maximal quantum Fisher information on both lossless and lossy conditions. As a result, we find that the squeezed entangled state (SES) and the entangled even squeezed state (EESS) can significantly enhance the precision for moderate loss rates compared with previous proposals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.