This study aimed to investigate how low temperature alters the sex expression of monoecious cucumbers (Cucumis sativus L.). Plants were grown under different day/night temperature regimes, 28 °C/18 °C (12 h/12 h), 18 °C/12 °C, 28 °C/12 °C, and 28 °C/(6 h 18 °C+6 h 12 °C). It was found that plant femaleness is highest in the 28 °C/(6 h 18 °C+6 h 12 °C) treatment. Analysis of endogenous phytohormones and sugars in the shoot apex revealed that plant femaleness is positively correlated with the levels of ethylene, abscisic acid (ABA), glucose, and sucrose. Exogenous application experiments suggest that ABA and ethylene biosynthesis, as well as plant femaleness, was enhanced by glucose, sucrose, and mannose, but not by 3-O-methylglucose. Exogenous ABA had no significant effect on ethylene biosynthesis and plant femaleness. Both low temperature- and sugar-induced ABA biosynthesis, ethylene evolution, and plant femaleness can be antagonized by the hexokinase inhibitor glucosamine and the ABA biosynthesis inhibitor nordihydroguaiaretic acid. It is concluded that the enhancement of cucumber femaleness under various temperature regimes is induced by elevated levels of glucose and sucrose in the shoot apex through a sugar signalling pathway involving hexokinase.
The aim of this research was to develop numerical modelling techniques for simulating the simultaneous effects of moisture, elevated temperature and applied load on the performance of adhesively bonded joints. Associated experimental data are also reported. The degradation process of the joints was modelled using a fully-coupled approach, with the moisture concentration affecting the stress distribution and the stress state affecting the moisture diffusion analyses simultaneously. Further, the stress analysis contains a moisture dependent creep model to accommodate viscous effects and both swelling and thermal strains were included in the simulation. The governing parameters adopted in the modelling procedure were determined from experimental work based on the bulk adhesive. The joint response was monitored throughout the ageing process and good correlation was found between the experimental and numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.