We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red and blue sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. There has not been any experimental evidence for tachyons occurring naturally. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion correlation in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations of realistic ion systems and show that our scheme is feasible with current technology.
The Hodgkin-Huxley model describes the behavior of the cell membrane in neurons, treating each part of it as an electric circuit element, namely capacitors, memristors, and voltage sources. We focus on the activation channel of potassium ions, due to its simplicity, while keeping most of the features displayed by the original model. This reduced version is essentially a classical memristor, a resistor whose resistance depends on the history of electric signals that have crossed it, coupled to a voltage source and a capacitor. Here, we will consider a quantized Hodgkin-Huxley model based on a quantum memristor formalism. We compare the behavior of the membrane voltage and the potassium channel conductance, when the circuit is subjected to AC sources, in both classical and quantum realms. Numerical simulations show an expected adaptation of the considered channel conductance depending on the signal history in all regimes. Remarkably, the computation of higher moments of the voltage manifest purely quantum features related to the circuit zero-point energy. This study may allow the construction of quantum neuron networks inspired in the brain function, as well as the design of neuromorphic quantum architectures for quantum machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.