It has been confirmed that polyphosphoric acid (PPA) can significantly improve the high-temperature resistance, storage stability, and aging resistance of asphalt. The low price of PPA is conducive to the development of modified asphalt with high performance and excellent economy, suggesting its great application prospects. At present, there is little research on the role of PPA in delaying the aging process of PPA-modified asphalt, and a consensus has not yet been reached. Therefore, PPA-modified asphalt with different blending amounts (0 wt%, 0.4 wt%, 0.8 wt%, and 1.2 wt%) was prepared in this study. On the basis of variable performance, the role of PPA in the short-term antiaging process of asphalt is analyzed through Fourier transform infrared spectroscopy (FTIR) analysis of PPA-modified asphalt before and after aging, combined with the analysis of the change in components. The results showed that after PPA addition, the high-temperature resistance and the thermal stability of asphalt were improved and the temperature sensitivity was weakened. Both curves of ductility and G ∗ indicate the potential saturation effect of PPA addition; together with infrared spectroscopy, we proved that there are both chemical reactions and physical mixing in the PPA-modified asphalt. The component fractions show that PPA will cause the asphalt to transform from sol to gel and the main function of PPA in retarding asphalt aging is the dispersion of the agglomerates of asphaltene micelles by PPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.