In this paper, we study stability analysis and stabilization problems for a class of nonlinear two-dimensional (2-D) discrete systems with time-varying state delays, described by local state-space (LSS) Fornasini-Marchesini (FM) second model. The upper and lower bounds of time-varying state delays are positive integers and the nonlinearity satisfies Lipschitz condition. First, a stability criteria is proposed through introducing a new Lyapunov function. Then a dynamic output feedback controller is designed to assure the stability of nonlinear 2-D time-varying systems. Moreover, the output feedback system matrices can be obtained by solving linear matrix inequalities (LMIs). Finally, a numerical example is given to demonstrate the effectiveness of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.