Scope: Hepatic steatosis and insulin resistance (IR) are risk factors for many metabolic syndromes such as NAFLD and T2DM. ApoA4 improves glucose hemostasis by increasing glucose-stimulated insulin secretion and glucose uptake via PI3K-Akt activation in adipocytes. However, whether ApoA4 has an effect on hepatic steatosis or IR remains unclear. Methods and results: ApoA4-knockout (KO) aggravates diet-induced obesity, hepatic steatosis, and IR in mice promoted by increased hepatic lipogenesis gene expression based on RNA-seq data. Conversely, liver-specific overexpression of ApoA4 via AAV-ApoA4 transduction reverses the effect in ApoA4-KO mice, accompanied by suppressed hepatic lipogenesis, increased lipolysis, and fatty acid oxidation. Short-term treatment with recombinant ApoA4 protein improves glucose clearance and liver insulin sensitivity, and reduces hepatic lipogenesis gene expression in the absence of insulin. Moreover, in primary hepatocytes and a hepatic cell line, ApoA4 improves hepatic glucose uptake via IRS-PI3K-Akt signaling and decreases fat deposition and hepatic lipogenesis gene expression by inhibiting SREBF1 activity. Conclusion: ApoA4 restricts hepatic steatosis by inhibiting SREBF1-mediated lipogenesis and improves insulin sensitivity and glucose uptake via IRS-PI3K-Akt signaling in the liver. These findings indicate that ApoA4 may serve as a therapeutic target for obesity-associated NAFLD.
Background: Catch-up fat in adults (CUFA) caused by rapid nutrition promotion after undernutrition plays an important role in the epidemic of insulin resistance (IR)-related diseases in developing societies. Insulin resistance is considered to be closely associated with reduced testosterone levels and cognitive function. However, the effects of CUFA on testosterone levels and cognitive function are unclear in males.Objectives: To investigate the changes in testosterone levels and cognitive function in CUFA in male humans and rats, and explore their probable relationship and mechanisms in rats. Materials and methods: The blood testosterone levels, fasting glucose, and blood insulin (FINS) were measured in subpopulation 1 (27 CUFA individuals, 61 controls without CUFA) aged 40-50 years to show the characteristics of sex hormone levels and the metabolic status in CUFA men. Cognitive Flexibility Inventory was conducted in subpopulation 2 (54 CUFA individuals, 214 controls) over 20 years to investigate the associations between sex hormone levels, cognitive function, and CUFA. Male rats (n = 27) were randomly allocated to the NC group (normal chow controls), RN group (CUFA, refeeding after caloric restriction), and RT group (RN with testosterone intramuscularThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.