Unlike conventional phased array (PA), frequency diversity array (FDA) can perform the beampattern synthesis not only in an angle dimension but also in a range dimension by introducing an additional frequency offset (FO) across the array aperture, thus greatly enhancing the beamforming flexibility of an array antenna. Nevertheless, an FDA with uniform inter-element spacing that consists of a huge number of elements is required when a high resolution is needed, which results in a high cost. To substantially reduce the cost while almost maintaining the antenna resolution, it is important to conduct a sparse synthesis of FDA. Under these circumstances, this paper investigated the transmit–receive beamforming of a sparse-fda in range and angle dimensions. In particular, the joint transmit–receive signal formula was first derived and analyzed to resolve the inherent time-varying characteristics of FDA based on a cost-effective signal processing diagram. In the sequel, the GA-based low sidelobe level (SLL) transmit–receive beamforming of the sparse-fda was proposed to generate a focused main lobe in a range-angle space, where the array element positions were incorporated into the optimization problem. Numerical results showed that 50% of the elements can be saved for the two linear FDAs with sinusoidally and logarithmically varying frequency offsets, respectively termed as sin-FO linear-FDA and log-FO linear-FDA, with only a less than 1 dB increment in SLL. The resultant SLLs are below −9.6 dB, and −12.9 dB for these two linear FDAs, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.