We develop the method of vector-fields to further study Dispersive Wave Equations. Radial vector fields are used to get a-priori estimates such as the Morawetz estimate on solutions of Dispersive Wave Equations.A key to such estimates is the repulsiveness or nontrapping conditions on the flow corresponding to the wave equation. Thus this method is limited to potential perturbations which are repulsive, that is the radial derivative pointing away from the origin. In this work, we generalize this method to include potentials which are repulsive relative to a line in space (in three or higher dimensions), among other cases. This method is based on constructing multi-centered vector fields as multipliers, cancellation lemmas and energy localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.