The Ru/C nanocomposites with loading of 20wt% were prepared by ethylene glycol in the presence of XC-72. Carbon-supported Ru nanoparticles were decorated with Pt by spontaneous deposition method after Ru surface oxides were reduced in the hydrogen atmosphere at 180 for 2h. TEM indicated that the average particle size of catalyst was about 4nm with excellent dispersion and the XRD analyzing results showed that Pt had decorated on surface of Ru. The anti-poisoning ability was studied by pre-adsorbing CO striping voltammetric curves in 0.1M HClO4. Catalytic activities of the prepared Pt/Ru/C were studied by cyclic voltammetry in a solution of 0.5 mol/L CH3OH + 0.1 mol/L HClO4. The results showed that the oxidation current density was far more than 60wt% RuPt/C (E-TEK) and 20wt% Pt/C (Johnson Matthey). At the same time, the study also showed that the prepared catalyst not only had a higher catalytic activity to methanol, but also had lower Pt loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.