Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC.
Hepatocarcinogenesis in human chronic liver diseases is a multi-step process in which hepatic precancerous lesions progress into early hepatocellular carcinoma (HCC) and progressed HCC, and the close surveillance and treatment of these lesions will help improve the survival rates of patients with HCC. The rapid development and extensive application of imaging technology have facilitated the discovery of nodular lesions of ambiguous significance, such as dysplastic nodules. Further investigations showed that these nodules may be hepatic precancerous lesions, and they often appear in patients with liver cirrhosis. Although the morphology of these nodules is not sufficient to support a diagnosis of malignant tumor, these nodules are closely correlated with the occurrence of HCC, as indicated by long-term follow-up studies. In recent years, the rapid development and wide application of pathology, molecular genetics and imaging technology have elucidated the characteristics of precancerous lesions. Based on our extensive review of the relevant literature, this article focuses on evidence indicating that high-grade dysplastic nodules are more likely to transform into HCC than low-grade dysplastic nodules based on clinical, pathological, molecular genetic and radiological assessments. In addition, evidence supporting the precancerous nature of large cell change in hepatitis B virus-related HCC is discussed.
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
The receptor tyrosine kinase Axl and its ligand Gas6 regulate fundamental biological processes, including cell proliferation, survival and motility, through multiple downstream signaling pathways. Evidence to date suggests that aberrant Axl expression frequently occurs in many malignancies, including hepatocellular carcinoma, and that this is critical for promoting cell proliferation, migration, angiogenesis and metastasis. Moreover, deregulated Axl expression or activation is reportedly associated with resistance to cancer drugs and targeted cancer therapies. Thus, Axl inhibitors may represent a novel therapeutic approach for cancer treatment. This Review summarizes the latest advances concerning the biological role of Axl in hepatocellular carcinoma and its potential clinical relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.