In this study, we proposed a dual-wavelength electrochemiluminescence resonance energy transfer (ECL-RET) ratiometric sensor combined with duplex-specific nuclease (DSN)-assisted target recycling amplification to detect microRNAs (miRNAs). Due to the perfect overlapping of spectra, the gold-nanoparticle-luminol-layered-double-hydroxides (Au NP-luminol-LDH) nanocomposite and gold nanoclusters (Au NCs) exhibited excellent ECL-RET effect with high efficiency. The Au NP-luminol-LDH donor exhibits a strong and stable ECL emission at the wavelength peak of 440 nm, while the Au NC acceptor has an emission peak at 620 nm. Upon the introduction of DSN and target miRNAs, the specific DNA-RNA binding and nuclease cleaving could trigger the detachment of capture Au NCs-DNA from the surface of Au NPluminol-LDH, resulting in an increased ECL signal of Au NP-luminol-LDH and a decreased fluorescence signal of Au NCs. By measuring the ratio of optical signals at 440 and 620 nm, the designed sensor provided a quantitative readout proportional to the target miRNAs concentration in the range of 10 aM to 100 pM with a lower detection limit (LOD) of 9.4 aM.
Ratiometric electrochemiluminescence (ECL) assays have been widely applied in biosensing because of eliminated outside interferences and improved reliability in detection.
In this study, we proposed a nanopore-based electrochemiluminescence (ECL) sensor combined with duplex-specific nuclease (DSN)-assisted target recycling amplification to detect microRNAs. Because of the synergetic effect of electrostatic repulsion and volume exclusion of gold nanoparticle-labeled DNA capture (DNA-Au NPs) to the negatively charged luminol anion probe, the DNA-Au NP-modified anodized aluminum oxide (AAO) nanopore electrode exhibited high ECL decline in comparison with the bare AAO electrode. Upon the introduction of DSN and target microRNA, the specific DNA-RNA binding and enzyme cleaving could trigger the detachment of capture DNA from the membrane surface, resulting in uncapping of AAO and an increased ECL signal. For comparison, positively charged Ru(bpy) was used as the ECL probe instead of luminol. Because the electrostatic attraction effect between DNA and Ru(bpy) is partially offset by the volume exclusion effect of Au NPs, the AAO electrode modified with only DNA capture is more suitable for the Ru(bpy) case. In our experiment, the case of negatively charged luminol combined with the synergetic effect of electrostatic repulsion and volume exclusion of DNA-Au NPs provides a quantitative readout proportional to the target microRNA concentration in the range of 1.0 fM to 1.0 nM, with a lower detection limit of 1 fM.
The protein CD24 is a cell surface protein that appears to function as an adhesion molecule; its expression has been shown to correlate with prognosis in a variety of tumors. Herein, we investigated the possible role and mechanism of CD24 in cervical cancer. Our results showed that CD24 was overexpressed in cervical cancer tissues compared with that in the adjacent non‑cancerous tissues by qPCR, immunohistochemistry and western blotting technologies. To explore the possible mechanism of CD24 in cervical cancer, we elucidated the effect of CD24 on the proliferation and apoptosis of cervical cancer HeLa cells and found that a considerable increase in cell proliferation was observed in the HeLa cells with CD24 overexpession. The rate of cell apoptosis was decreased in the HeLa/CD24 cells compared with the HeLa or HeLa/vector cells. Cell apoptosis is closely related with a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of CD24 in the cervical cancer HeLa cells, led to an increase in ΔΨm and a decrease in intracellular ROS and Ca2+ concentrations. Furthermore, we found that CD24 was correlated with dysregulation of the MAPK signaling pathway in cervical cancer tissues in vitro. At the same time, we found that CD24 overexpression affected the expression of p38, JNK2 and c-Jun in vitro. In summary, our results suggest that CD24 is upregulated in cervical cancer tissues and plays its functions by affecting the MAPK signaling pathway in cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.