A study was performed to determine if targeted metabolic profiling of cattle sera could be used to establish a predictive tool for identifying hormone misuse in cattle. Metabolites were assayed in heifers (n = 5) treated with nortestosterone decanoate (0.85 mg/kg body weight), untreated heifers (n = 5), steers (n = 5) treated with oestradiol benzoate (0.15 mg/kg body weight) and untreated steers (n = 5). Treatments were administered on days 0, 14, and 28 throughout a 42 day study period. Two support vector machines (SVMs) were trained, respectively, from heifer and steer data to identify hormone-treated animals. Performance of both SVM classifiers were evaluated by sensitivity and specificity of treatment prediction. The SVM trained on steer data achieved 97.33% sensitivity and 93.85% specificity while the one on heifer data achieved 94.67% sensitivity and 87.69% specificity. Solutions of SVM classifiers were further exploited to determine those days when classification accuracy of the SVM was most reliable. For heifers and steers, days 17-35 were determined to be the most selective. In summary, bioinformatics applied to targeted metabolic profiles generated from standard clinical chemistry analyses, has yielded an accurate, inexpensive, high-throughput test for predicting steroid abuse in cattle.
The solution of a Least Squares Support Vector Machine (LS-SVM) suffers from the problem of nonsparseness. The Forward Least Squares Approximation (FLSA) is a greedy approximation algorithm with a least-squares loss function. This paper proposes a new Support Vector Machine for which the FLSA is the training algorithm—the Forward Least Squares Approximation SVM (FLSA-SVM). A major novelty of this new FLSA-SVM is that the number of support vectors is the regularization parameter for tuning the tradeoff between the generalization ability and the training cost. The FLSA-SVMs can also detect the linear dependencies in vectors of the input Gramian matrix. These attributes together contribute to its extreme sparseness. Experiments on benchmark datasets are presented which show that, compared to various SVM algorithms, the FLSA-SVM is extremely compact, while maintaining a competitive generalization ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.