The H- infinity stability of Lurie switched systems is investigated. All the subsystems are Lurie systems. Lyapunov functions is used to derive the sufficient conditions for H- infinity stability of systems .
In recent years, concrete-filled steel tube (CFST) was developed and used extensively in civil engineering in China. In this paper, the method for stability analysis of long-span CFST arch bridge was introduced. Based on Jingyang River Bridge in Hubei province of China and finite element method, the spatial model was set up. Both linear and nonlinear stability of long-span CFST arch bridge in construction process were analyzed. The result indicated the influence of geometrical nonlinearity was small and the influence of material nonlinearity was evident. So, for analyzing the stability of long-span CFST arch bridge, the influence of geometrical nonlinearity and material nonlinearity must be considered at the same time. The results of paper were used to provide the basis for the construction control of the bridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.