In order to solve the defects of traditional text classification in digital library, the author proposes a method based on deep learning in the field of big data and artificial intelligence, which is applied to the digital library information integration system. On the basis of systematically sorting out the traditional text classification of digital library of this method, this paper proposes a digital library text classification model based on deep learning and uses the word vector method to represent text features, the convolutional neural network in the deep learning model is used to extract the essential features of text information, and experimental verification is carried out. Experimental results show that deep learning-based text classification model can effectively improve the accuracy (average 94.8%) and recall (average 94.5%) of text classification in digital libraries; compared with the traditional text classification method, the text classification method based on deep learning improves the average F1 value by about 11.6%. Conclusion. This method can not only improve the intelligence of the internal business of the digital library, but also improve the efficiency and quality of the information service of the digital library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.