In this work, feather-column 7YSZ thermal barrier coatings (TBCs) were prepared by plasma spray-physical vapor deposition (PS-PVD). The anti-particle erosion test was carried out at room temperature to study the erosion behavior and failure mechanism of PS-PVD TBCs. The results showed that the particle erosion process of the PS-PVD TBCs experienced three stages of high-rate, medium-rate and slow-rate erosion. In order to improve the particle erosion resistance of the PS-PVD TBCs, different thicknesses of dense-layered coatings were prepared on the surface of the PS-PVD TBCs by air plasma spraying (APS). The effect of dense-layered thickness on the erosion behaviour of PS-PVD TBCs was discussed. Experimental results showed that, as the thickness of the dense-layered increased, the erosion resistance of the PS-PVD TBCs enhanced. When the thickness of the dense-layered coating was 5μm, it was not obvious upon the influence on the erosion failure behavior of the PS-PVD TBCs. In the case of a 10μm dense-layered coating, the erosion resistance performance of the PS-PVD TBCs improved by about 30%. While the erosion resistance performance of the PS-PVD TBCs increased almost 4 times when the thickness of the dense layer reached 20μm.
An investigation of spallation behaviors of plasma-sprayed ZrO2-7wt.%Y2O3(7YSZ) splat at high temperature was carried out to understand the failure mechanism of thermal barrier coating (TBC). In present work, 7YSZ splats prepared by atmospheric plasma spray (APS) were collected on mirror polished NiCoCrAlYTa bond coating holding at 250 °C, where the nickel base superalloy K4169 was used as substrate. Then the samples with splats were taken into air furnace for isothermal oxidation test at 900 °C for different time. The surface of splat and cross section of splat-bond coating interface during isothermal test were characterized using a focused ion beam (FIB) assisted field emission scanning electron microscope (FE-SEM). Besides, the compositions of thermally grown oxide (TGO) layer at splat-bond coating interface were analyzed after oxidation test. In addition, the schematic diagram of spallation process and oxidation model of splat has been presented at relatively high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.