These data indicate that ARC participates in preconditioning-triggered cardioprotection by interfering with cytochrome c release and caspase-3 activation.
Perfluorocarbons have been widely used in the semiconductor industry. As highly potent global warming gases, they have extremely long atmospheric lifetime and intensive absorption ability of infrared radiation. Naturally, the abatement of PFCs becomes a critical environmental issue. In this paper, an effort is made to review the development of microwave plasma technology for the control of PFCs. Relevant studies indicate that microwave plasma has the advantage of high electron temperature and high electron density which is of great potential to PFCs abatement. Low pressure microwave plasma may interfere with the normal operation of semiconductor manufacturing processes. At atmospheric pressure, microwave plasmas exhibit high react performance with PFCs. The atmospheric pressure microwave plasma combined with catalyst can reduce the microwave power and increase the destruction and removal efficiency and energy efficiency. The combination technology has a good potential to be used as an integrated technology for abating PFCs from complicated gas streams of semiconductor manufacturing processes.
Vapour-phase alkylation of catechol with ethanol has been investigated over Al-P-Ti-O oxides prepared by non-uniform precipitation method. The catalytic activities decrease with the increase of P content. The catalytic activities increase with increasing Ti content, while the selectivity to guathol decreases. The results of XRD characterization demonstrate that the increase of titanium and the addition of additive affects the structure of the catalysts. The addition of additive (cane sugar or citric acid) decrease the catalytic activities of the catalysts, while increase the stability of the catalyst. Both the conversion of catechol and the selectivity to guathol decrease by the addition of additive, and the C-alkylation products increase obviously. The results indicate that the appropriate pores and surface area are enough for the title reaction, lager pore and higher surface area are favorable to C-alkylation products and stability of catalyst.
Microwave energy was used to prepare modified activated carbons (GAC, GAC/MW, GAC/Ni, and GAC/Cu). The modified activated carbons were used for phenol adsorption in aqueous solution. The adsorption conditions were optimized. Adsorption capacities of the different modified activated carbons were evaluated. The effect of microwave pretreatment of activated carbons was investigated. A comparative study on the activated carbons adsorption capacities was also investigated. Under optimal conditions the results showed that there was no obvious effect on activated carbons adsorption when rising temperature and pH during the adsorption process. Stirring has a very high effect on the activated carbons adsorption capacity. The adsorption capacity of the modified activated carbons reaches 95%. MW/GAC, GAC/Ni and GAC/Cu adsorptive capacity was higher compared to the Granulated Activated Carbon (GAC) used as received. GAC treated with microwave energy has highest adsorption capacity. The adsorption capacity of GAC loaded with ion Ni2+ is higher than the activated carbon loaded with Cu2+. The untreated GAC has the lowest adsorption capacity. These results can be explained by the effect of microwave irradiation on GAC.The activated carbon loaded with Ni2+ adsorbs more microwave energy than the GAC loaded with Cu2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.