Orchid conservation efforts, using seeds and species-specific fungi that support seed germination, require the isolation, identification, and germination enhancement testing of symbiotic fungi. However, few studies have focused on developing such techniques for the epiphytes that constitute the majority of orchids. In this study, conducted in Xishuangbanna Tropical Botanical Garden, Yunnan, China, we used seeds of Dendrobium aphyllum, a locally endangered and medicinally valuable epiphytic orchid, to attract germination promoting fungi. Of the two fungi isolated from seed baiting, Tulasnella spp. and Trichoderma spp., Tulasnella, enhanced seed germination by 13.6 %, protocorm formation by 85.7 %, and seedling development by 45.2 % (all P < 0.0001). Epulorhiza, another seed germination promoting fungi isolated from Cymbidium mannii, also enhanced seed germination (6.5 %; P < 0.05) and protocorm formation (20.3 %; P < 0.0001), but Trichoderma suppressed seed germination by 26.4 % (P < 0.0001). Tulasnella was the only treatment that produced seedlings. Light increased seed imbibition, protocorm formation, and two-leaved seed development of Tulasnella inoculated seeds (P < 0.0001). Because the germination stage success was not dependent on fungi, we recommend that Tulasnella be introduced for facilitating D. aphyllum seed germination at the protocorm formation stage and that light be provided for increasing germination as well as further seedling development. Our findings suggest that in situ seed baiting can be used to isolate seed germination-enhancing fungi for the development of seedling production for conservation and reintroduction efforts of epiphytic orchids such as D. aphyllum.
All orchids maintain an obligate relationship with mycorrhizal symbionts during seed germination. In most cases, germination-enhancing fungi have been isolated from roots of mature plants for conservation and cultivation purposes. To understand the germination biology of Dendrobium devonianum, an over-collected medicinal orchid, the seeds of D. devonianum were inoculated with a fungal strain (FDd1) isolated from naturally occurring protocorms of D. devonianum and two other germination-enhancing fungal strains (FDaI7 and FCb4) from D. aphyllum and Cymbidium mannii, respectively. The fungal strain was isolated from five protocorms of D. devonianum and identified as a species of the genus Epulorhiza. In germination trials, treatments with all of the three fungal strains showed a significant promoting effect on seed germination and protocorm formation, compared with the control treatment (no inoculation). However, FDd1 fungal strain showed the greatest effectiveness followed by FDaI7 and FCb4. For all inoculation and control treatments, seeds developed to protocorms regardless of the presence of illumination, whereas protocorms did not develop to seedlings unless illumination was provided. The results of our manipulative experiments confirmed the hypothesis that mycorrhizae associated with orchid seedlings are highly host-specific, and the degree of specificity may be life stagespecific under in vitro conditions. The specific mycorrhizal symbionts from protocorms can enhance restoration efforts and the conservation of orchids such as D. devonianum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.