Colicin Ia is a bactericidal protein that forms voltage-dependent, ion-conducting channels, both in the inner membrane of target bacteria and in planar bilayer membranes. Its amino acid sequence is rich in charged residues, except for a hydrophobic segment of 40 residues near the carboxyl terminus. In the crystal structure of colicin Ia and related colicins, this segment forms an alpha-helical hairpin. The hydrophobic segment is thought to be involved in the initial association of the colicin with the membrane and in the formation of the channel, but various orientations of the hairpin with respect to the membrane have been proposed. To address this issue, we attached biotin to a residue at the tip of the hydrophobic hairpin, and then probed its location with the biotin-binding protein streptavidin, added to one side or the other of a planar bilayer. Streptavidin added to the same side as the colicin prevented channel opening. Prior addition of streptavidin to the opposite side protected channels from this effect, and also increased the rate of channel opening; it produced these effects even before the first opening of the channels. These results suggest a model of membrane association in which the colicin first binds with the hydrophobic hairpin parallel to the membrane; next the hairpin inserts in a transmembrane orientation; and finally the channel opens. We also used streptavidin binding to obtain a stable population of colicin molecules in the membrane, suitable for the quantitative study of voltage-dependent gating. The effective gating charge thus determined is pH-independent and relatively small, compared with previous results for wild-type colicin Ia.
We constructed a peptide consisting of a staphylococcal AgrD1 pheromone fused to the channel-forming domain of colicin Ia and named it pheromonicin. This fusion peptide had bactericidal effects against methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA, respectively), but not against Staphylococcus epidermidis or Streptococcus pneumoniae. Growth rates, vital staining and colony forming unit (CFU) counts showed that pheromonicin did not merely suppress growth but killed S. aureus cells. The specificity of pheromonicin was shown by the absence of bactericidal effects against an accessory gene regulator (agr) locus knockout of S. aureus, and a dose-dependent inhibition of the bactericidal effects of pheromonicin by competition with corresponding free AgrD pheromone. In vivo, all pheromonicin-treated mice survived administration of MRSA that was lethal to controls. No toxicity was detectable in human liver or renal cells in culture, or in livers, kidneys or spleens of pheromonicin-treated mice. The results suggest that these types of chimeric peptides may be of value as antibiotics against specific bacterial infections.
Here we show that fusion of two complementarity-determining regions (CDRs), VHCDR1 and VLCDR3, through a cognate framework region (VHFR2) yields mimetics that retain the antigen recognition of their parent molecules, but have a superior capacity to penetrate tumors. The antigen-recognition abilities of these approximately 3 kDa mimetics surpass those of comparable fragments lacking the framework region. In vivo activities of the mimetics suggests that the structural orientation of their CDRs approximates the conformation of the CDRs in the complex of the parent antibody with antigen. We linked the antibody mimetics to the bacterial toxin colicin Ia to create fusion proteins called "pheromonicins," which enable targeted inhibition of tumor growth. In mice bearing human malignant tumors, pheromonicins directed against tumor-specific surface markers show greater capacity to target and penetrate tumors than their parent antibodies. Rational recombination of selected VH/VL binding sites and their framework regions might provide useful targeting moieties for cytotoxic cancer therapies.
A novel antienterococcal peptide was prepared by fusing the enterococcal cCF10 pheromone to the channelforming domain of colicin Ia, forming Enterococcus faecalis pheromonicin (PMC-EF). This peptide was bactericidal against vancomycin-resistant Enterococcus faecalis (VRE) organisms. Electron microscopy and vital dyes confirmed increased membrane permeability. All mice made bacteremic with VRE strains survived when they were treated with PMC-EF, while all controls died.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.