Pulmonary surfactant, a unique developmentally regulated, phospholipid-rich lipoprotein, is synthesized by the type II epithelial cells (AECII) of the pulmonary alveolus, where it is stored in organelles termed lamellar bodies. The synthesis of pulmonary surfactant is under multifactorial control and is regulated by a number of hormones and factors, including glucocorticoids, prolactin, insulin, growth factors, estrogens, androgens, thyroid hormones, and catecholamines acting through beta-adrenergic receptors, and cAMP. While there is increasing evidence that microRNAs (miRNAs) are involved in the regulation of almost every cellular and physiological process, the potential role of miRNAs in the regulation of pulmonary surfactant synthesis remains unknown. miRNA-26a (miR-26a) has been predicted to target SMAD1, one of the bone morphogenetic protein (BMP) receptor downstream signaling proteins that plays a key role in differentiation of lung epithelial cells during lung development. In this study, we explored the regulation role of miR-26a in the synthesis of pulmonary surfactant. An adenoviral miR-26a overexpression vector was constructed and introduced into primary cultured fetal AECII. GFP fluorescence was observed to determinate the transfection efficiency and miR-26a levels were measured by RT-PCR. MTT was performed to analyze AECII viability. qRT-PCR and Western blotting were used to determine the mRNA and protein level of SMAD1 and surfactant-associated proteins. The results showed that miR-26a in fetal AECII was overexpressed after the transfection, and that the overexpression of miR-26a inhibited pulmonary surfactant synthesis in AECII. There was no significant change in cell proliferation. Our results further showed that overexpression of miR-26a reduced the SMAD1 expression both in mRNA and protein level in fetal AECII. These findings indicate that miR-26a regulates surfactant synthesis in fetal AECII through SMAD1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.