In this paper, an intersection theory for generic differential polynomials is presented. The intersection of an irreducible differential variety of dimension d and order h with a generic differential hypersurface of order s is shown to be an irreducible variety of dimension d − 1 and order h + s. As a consequence, the dimension conjecture for generic differential polynomials is proved. Based on the intersection theory, the Chow form for an irreducible differential variety is defined and most of the properties of the Chow form in the algebraic case are established for its differential counterpart. Furthermore, the generalized differential Chow form is defined and its properties are proved. As an application of the generalized differential Chow form, the differential resultant of n + 1 generic differential polynomials in n variables is defined and properties similar to that of the Macaulay resultant for multivariate polynomials are proved.
In this paper, we propose a general scheme to analyze the gradient vanishing phenomenon, also known as the barren plateau phenomenon, in training quantum neural networks with the ZX-calculus. More precisely, we extend the barren plateaus theorem from unitary 2-design circuits to any parameterized quantum circuits under certain reasonable assumptions. The main technical contribution of this paper is representing certain integrations as ZX-diagrams and computing them with the ZX-calculus. The method is used to analyze four concrete quantum neural networks with different structures. It is shown that, for the hardware efficient ansatz and the MPS-inspired ansatz, there exist barren plateaus, while for the QCNN ansatz and the tree tensor network ansatz, there exists no barren plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.