In this paper, we introduce the Hom-algebra setting of the notions of matching Rota-Baxter algebras, matching (tri)dendriform algebras and matching (pre)Lie algebras. Moreover, we study the properties and relationships between categories of these matching Hom-algebraic structures.
As a generalization of Rota–Baxter algebras, the concept of an Ω-Rota–Baxter could also be regarded as an algebraic abstraction of the integral analysis. In this paper, we introduce the concept of an Ω-dendriform algebra and show the relationship between Ω-Rota–Baxter algebras and Ω-dendriform algebras. Then, we provide a multiplication recursion definition of typed, angularly decorated rooted trees. Finally, we construct the free Ω-Rota–Baxter algebra by typed, angularly decorated rooted trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.