In order to improve the computing precision and computing efficiency of strength of woven composite material, the strength of woven composite material based on multi-scale finite element method (MsFEM) is simulated. The periodical boundary conditions are applied to the finite element method analyses to ensure stress continuous and strain continuous on boundary surfaces. The method can efficiently capture the large scale behavior of the solution without resolving all the small scale features by constructing the multi-scale finite element base functions that are adaptive to the local property of the differential operator. The characteristic difference between MsFEM and the conventional finite element method is attributed to base function. The applications demonstrate that the advantages of the multi-scale finite element method for numerical simulation of strength problem of woven composite material, i.e. significantly reducing computational efforts, and improving the accuracy of the solutions.
For the burst-type acoustic emission signal, time delay estimation of two sensors calculated by signal cross-correlation is not accurate, and it leads the source localization results is not also accurate. A new method is proposed to improve accuracy of source localization results based on multi-scale analysis and multi-sensors. Acoustic emission signal multi-scale analysis using wavelet transform, then the most accurate time delay is selected in sub-band of signal multi-scale analysis by multi-sensors time delay vector close rule. Finally, the simulation acoustic emission source localization experiment has high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.