DC-based tumor vaccine research has largely focused on enhancing DC maturation/costimulation and antigen presentation in order to break tolerance against self tumor-associated antigens. DC immunization can activate autoreactive T cells but rarely causes autoimmune pathologies, indicating that self tolerance at the host level is still maintained in the vaccinated hosts. This study in mice reveals a novel regulatory mechanism for the control of self tolerance at the host level by DCs through the restriction of positive cytokine feedback loops by cytokine signaling inhibitor SOCS1. The study further finds the requirement of persistent antigen presentation by DCs for inducing pathological autoimmune responses against normal tissues and tumor, which can be achieved by silencing SOCS1 to unleash the unbridled signaling of IL-12 and the downstream cytokine cascade. However, the use of higher-affinity self peptides, enhancement of DC maturation, and persistent stimulation with cytokines or TLR agonists fail to break tolerance and induce pathological antitumor immunity. Thus, this study indicates the necessity of inhibiting SOCS1, an antigen presentation attenuator, to break self tolerance and induce effective antitumor responses.
Antigen-specific IgG Abs 1 in autoimmune and alloimmune disease are described to catalyze chemical reactions (1-3). Examples of catalytic Abs raised by routine experimental immunization with ordinary antigens have also been published (4 -7). However, no consensus has developed whether naturally occurring catalytic Abs represent rare accidents arising from adaptive sequence diversification processes or genuine enzymes with important functional roles. The major reason is that the turnover (k cat ) of antigen-specific IgG Abs is low. Some catalytic Abs express catalytic efficiencies (k cat /K m ) comparable to conventional enzymes, but this is due to high affinity recognition of the antigen ground state (reviewed in Ref. 8).Certain enzymes cleave peptide bonds by a mechanism involving the formation of a transient covalent intermediate of the substrate and a nucleophilic residue present in the active site. The nucleophiles are generated by intramolecular activation mechanisms, e.g. the activation of Ser/Thr side chain hydroxyl groups by hydrogen bonding to His residues, and can be detected by covalent binding to electrophilic phosphonate diesters (9, 10). Using these compounds as covalently reactive analogs of antigens (CRAs), we observed that IgG Abs express nucleophilic reactivities comparable to trypsin (11). Despite their nucleophilic competence, IgG Abs display low efficiency proteolysis, presumably due to deficiencies in steps occurring after formation of the acyl-Ab intermediate, viz., water attack on the intermediate and product release. Occupancy of the B cell receptor (BCR, surface Ig complexed to ␣ and  subunits along with other signal transducing proteins) by the antigen drives B cell clonal selection. Proteolysis by the BCR is compatible with clonal selection, therefore, only to the extent that the release of antigen fragments is slower than the rate of antigeninduced transmembrane signaling necessary for induction of cell division. Immunization with haptens mimicking the charge characteristics of the transition state (12) has been suggested as a way to surmount the barrier to adaptive improvement of catalytic rate constants. Catalysis by designer IgG Abs obtained by these means, however, also proceeds only slowly.In mice and humans, the initial Ab repertoire consists of ϳ100 heritable VL and VH genes. Adaptive maturational processes expand the repertoire by several orders of magnitude. The initial BCR complex on the pre-B cell surface contains V-(D)-J rearranged Ig chains as a complex with surrogate L chains (reviewed in Ref. 13). Precise assignment of the B cell differentiation stage at which cell division becomes antigen-dependent is somewhat ambiguous, but it is generally believed that non-covalent antigen binding to the pre-BCR is not required for initial cell growth. / chains replace the surrogate L chain at the later stages of antigen-driven B cell differentiation, which is accompanied by diversification via somatic hypermutation processes and continued gene rearrangements (14,15). V-(D)-J gene ...
BackgroundCurrent efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor.Methods and FindingsWe used small interfering RNA (siRNA) to inhibit suppressor of cytokine signaling (SOCS) 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs) to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env)-specific CD8+ cytotoxic T lymphocytes and CD4+ T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA.ConclusionsThis study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines.
Immunotherapy with CD123-specific T-cell engager proteins or with T cells expressing CD123-specific chimeric antigen receptors is actively being pursued for acute myeloid leukemia. T cells secreting bispecific engager molecules (ENG-T cells) may present a promising alternative to these approaches. To evaluate therapeutic potential, we generated T cells to secrete CD123/CD3-bispecific engager molecules. CD123-ENG T cells recognized primary acute myeloid leukemia (AML) cells and cell lines in an antigen-dependent manner as judged by cytokine production and/or tumor killing, and redirected bystander T cells to AML cells. Infusion of CD123-ENG T cells resulted in regression of AML in xenograft models conferring a significant survival advantage of treated mice in comparison to mice that received control T cells. At high effector to target ratios, CD123-ENG T cells recognized normal hematopoietic stem and progenitor cells (HSPCs) with preferential recognition of HSPCs from cord blood compared to bone marrow. We therefore introduced the CD20 suicide gene that can be targeted in vivo with rituximab into CD123-ENG T cells. The expression of CD20 did not diminish the anti-AML activity of CD123-ENG T cells, but allowed for rituximab-mediated ENG-T cell elimination. Thus, ENG-T cells coexpressing CD20 suicide and CD123 engager molecules may present a promising immunotherapeutic approach for AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.