A dual-enzyme-loaded multifunctional hybrid nanogel probe (SPIO@GCS/acryl/biotin-CAT/SOD-gel, or SGC) has been developed for dual-modality pathological responsive ultrasound (US) imaging and enhanced T2-weighted magnetic resonance (MR) imaging. This probe is composed of functionalized superparamagnetic iron oxide particles, a dual enzyme species (catalase and superoxide dismutase), and a polysaccharide cationic polymer glycol chitosan gel. The dual-modality US/MR imaging capabilities of the hybrid nanogel for responsive US imaging and enhanced T2-weighted MR imaging have been evaluated both in vitro and in vivo. These results show that the hybrid nanogel SGC can exhibit efficient dual-enzyme biocatalysis with pathological species for responsive US imaging. SGC also demonstrates increased accumulation in acidic environments for enhanced T2-weighted MR imaging. Further research on these nanogel systems may lead to the development of more efficient US/MR contrast agents.
This prospective study of comparing transperineal prostate biopsy (TPBx) with transrectal prostate biopsy (TRBx) was aimed to provide evidence for clinicians to select the appropriate biopsy approach under different conditions. TPBx (n = 173) and TRBx (n = 166) were performed randomly for 339 patients who were suspicious of prostate cancer (PCa). The cancer detection rate (CDR), complication rate, visual analogue scale (VAS) score, most painful procedure, number of repeated biopsy and additional anesthesia, and operating time (starting from lying down on the operating table to getting up) were recorded. The results showed that TPBx and TRBx were equivalent in CDR (35.3% vs. 31.9%) and minor complication rate (44.9% vs. 41.0%) (both P > 0.05). The major complication rate was lower in TPBx than in TRBx (0.6% vs. 4.3%, P < 0.05). TPBx was more time-consuming (17.51 ± 3.33 min vs. 14.73 ± 3.25 min) and painful (VAS score: 4.0 vs. 2.0); and it had higher rates of repeated biopsy (3.2% vs. 1.1%) and additional anesthesia (15.0% vs. 1.2%) (all P < 0.05). In summary, both TPBx and TRBx are effective to detect PCa. The major complication rate for TRBx is higher, whereas TPBx procedure is more complex and painful.
Cancer recurrence after surgical resection (SR) is a considerable challenge, and the biological effect of SR on the tumor microenvironment (TME) that is pivotal in determining postsurgical treatment efficacy remains poorly understood. Here, with an experimental model, we demonstrate that the genomic landscape shaped by SR creates an immunosuppressive milieu characterized by hypoxia and high-influx of myeloid cells, fostering cancer progression and hindering PD-L1 blockade therapy. To address this issue, we engineer a radio-immunostimulant nanomedicine (IPI549@HMP) capable of targeting myeloid cells, and catalyzing endogenous H2O2 into O2 to achieve hypoxia-relieved radiotherapy (RT). The enhanced RT-mediated immunogenic effect results in postsurgical TME reprogramming and increased susceptibility to anti-PD-L1 therapy, which can suppress/eradicate locally residual and distant tumors, and elicits strong immune memory effects to resist tumor rechallenge. Our radioimmunotherapy points to a simple and effective therapeutic intervention against postsurgical cancer recurrence and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.