Chemical mechanical polishing (CMP) of Cu pattern wafer based alkaline slurry in GLSI with R(NH2)n as complexing agent was investigated. In Cu CMP procedure, it is necessary to minimize the surface dishing and erosion while maintaining good planarity. This requirements are met through the complexing agents. Based on the reaction mechanism analysis of Cu in alkaline slurry with R(NH2)n as complexing agent in CMP, the performance of Cu dishing and erosion were discussed. The results showed that the slurry stability can be improved obviously by the addition of R(NH2)n as complexing agent, both Cu1 and Cu2 have good dishing and erosion performance. Furthermore, the dishing condition of Cu2 (180-230nm) is better than that of Cu1 (280-370nm), and the erosion condition of Cu2 (230-260nm) is also better than that of Cu1 (450-500nm).
With the microelectronic technology node moves down to 45 nm and beyond, and to reduce the RC delay time, low-k dielectric materials have been used to replace regular dielectric materials. Therefore, the down force of chemical mechanical planarization (CMP) needs to decrease based on the characteristics of low-k materials: low mechanical strength. In this study, the effect of new complex agent on copper dissolution in alkaline slurry for CMP was investigated. Based on the reaction mechanism analysis of Cu in alkaline slurry in CMP, the performance of Cu removal rate and surface roughness condition were discussed. It has been confirmed that Cu1 slurry demonstrates a relatively high removal rate with low down force. And also, by utilizing the Cu1 slurry, good result of Cu surface roughness were obtained.
With low-k dielectric materials taking the place of oxide dielectrics as the primary dielectric materials, the low-k dielectric materials and interconnection Cu metals during Chemical Mechanical Planarization (CMP) is becoming a critical surface quality issue as well. In this study, experiments are carefully designed and conducted to investigate the effects of colloidal silica under compared acidic slurry and self-prepared alkaline slurry on k value of low-k dielectric materials, and in both of the slurry, colloidal silica (20~30nm) was used as polishing abrasive. The results showed that k value of low-k dielectric materials both increased within a similar range (self-prepared alkaline slurry, 3.27~3.33; commercial acidic slurry, 3.26~3.32), however, the results showed a obviously different result from reference’s report.
Chemical mechanical planarization (CMP) of Cu pattern wafer based alkaline Cu slurry in GLSI was investigated. The performance of Cu removal rate and dishing condition were discussed in this paper. Different formation of alkali CMP slurry (Cu1 and Cu2 slurry) were observed by removal rate experiments and showed that alkaline slurry provided a robust polishing performance on initial removal rate, which Cu1 and Cu2 slurry were higher than that of commercial acidity slurry, and in addition, alkaline slurry also have good ending removal rate both in Cu1 and Cu2 slurry and favorable dishing in Cu2 slurry. Furthermore, the result indicated that Cu alkaline slurry with a complexing agent of R(NH2)n, compared with commercial acidity slurry with a inhibitor of Benzotriazol (BTA), have better application foreground for 45nm nod and more advanced nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.