dResistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.
Malaria remains a significant infectious disease with even artemisinin-based therapies now facing resistance in the field. Development of new therapies is urgently needed, either by finding new compounds with unique modes of action, or by reversing resistance towards known drugs with 'chemosensitizers' or 'chemoreversal' agents (CRA). Concerning the latter, we have focused on the resistance mechanisms developed against chloroquine (CQ). We have synthesized a series of compounds related to previously identified CRAs, and found promising novel compounds. These compounds show encouraging results in a coumarin labeled chloroquine uptake assay, exhibiting a dose response in resensitising parasites to the antimalarial effects of chloroquine. Selected compounds show consistent potency across a panel of chloroquine and artemisinin sensitive and resistant parasites, and a wide therapeutic window. This data supports further study of CRAs in the treatment of malaria and, ultimately, their use in chloroquine-based combination therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.