Astrocytes play a fundamental role in the pathogenesis of ischemic neuronal death. The optimal operation of electrogenic astrocytic transporters and exchangers for some well-defined astrocyte brain homeostatic functions depends on the presence of K(+) channels in the cell membranes and the hyperpolarized membrane potential. Our previous study showed that astrocytes functionally express two-pore domain K(+) channel TREK-1, which helps to set the negative resting membrane potential. However, the roles of TREK-1 on astrocytic function under normal and ischemic conditions remain unclear. In this study, we investigated the expression of TREK-1 protein on cultured astrocytes and the effect of TREK-1 activity on astrocytic glutamate clearance capacity and release of s100β after simulated ischemic insult. TREK-1 immunoreactivity was up-regulated after hypoxia. Suppression of TREK-1 activity inhibited the glutamate clearance capability, enhanced the inflammatory secretion of astrocytes derived s100β and led to increased neuronal apoptosis after ischemic insult. Our results suggest that TREK-1 activity is involved in astrocytic function and neuronal survival. This would provide evidence showing astrocytic TREK-1 involvement in ischemia pathology which may serve as a potential therapeutic target in stroke.
Astrocytes play an active and important role in the pathophysiology of cerebral ischemia. We have previously shown that mature hipppocampal astrocytes functionally express two-pore domain K(+) channel TREK-1, which significantly contributes to the passive conductance and help to set the negative resting membrane potential essential for the optimal operation of some astrocytic homeostatic functions. However, its expression under ischemic conditions remains to be determined. In this study, we examined the expression of TREK-1 in rat brain under physiological and focal ischemia conditions. The results show that TREK-1 was broadly expressed on astrocytes and neurons in the cortex, CA1 region of hippocampus. After middle cerebral artery occlusion induced focal ischemia, the TREK-1 expression was significantly increased at days 3, 7 and 30 following reperfusion, which correlated with reactive astrogliosis in the cortex and hippocampus. Cultured cortical astrocytes also express TREK-1. TREK-1 inhibitor quinine inhibited the proliferation of astrocytes exposed to hypoxia condition. These data provide evidence showing the astrocytic TREK-1 involvement in ischemia pathology.
SummaryTransforming growth factorb1 (TGFb1) is considered to be the principal contributor to liver fibrosis. So in this study the ribozymes against TGFb1 were designed. The in vitro cleavage activities of the ribozymes were assayed through incubation of 32 p-labeled target RNAs and 32 p-labeled ribozymes in different conditions. HSC-T6 cells were transfected with the eukaryotic constructs encoding ribozyme and disable ribozyme, then the stable cell clones were used to evaluate its antifibrotic characteristic through the effect of ribozyme on biological character of activated hepatic stellate cells (HSCs). The results demonstrated that two ribozymes (Rz803 and Rz1395) could cleave target RNAs into expected products effectively, Rz803 possessed better cleavage activity in vitro. Stable transfection of Rz803 into activated HSCs reduced TGFb1 expression in mRNA and protein level efficiently. The further studies demonstrated that Rz803 reduced deposition of collagen I, suppressed HSC proliferation, but had no effect on HSC activation in transfected HSC-T6 cells. Therefore, it indicated that Rz803 could reverse the character of activated HSCs by downregulating TGFb1 expression efficiently and diminishing TGFb1 signaling underlying activation of hepatic stellate cells. As the consequence, it would provide a potential therapeutic approach for liver fibrosis. IUBMB Life, 57: 31-39, 2005 Keywords RNA, catalytic; transforming growth factorb1, hepatic stellate cell; Character Introduction:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.