Human periodontitis is a chronic inlammatory disease induced by opportunistic Gramnegative anaerobic bacteria at the tooth-supporting apparatus. Within the gingivitisafected sulcus or periodontal pocket, the resident anaerobic bacteria interact with the host inlammatory reactions leading to a lower oxygen or hypoxic environment. A cellular/tissue oxygen-sensing mechanism and its appropriate regulation are needed to assist tissue adaptation to natural/pathology-induced variations in oxygen availability. In this chapter, we reviewed the biological relevance of hypoxia in periodontal/oral cellular development, epithelial barrier function, periodontal inlammation, and immunity. The role of hypoxia-inducible factor-1α in pathogen-host cross talk and alveolar bone homeostasis was also discussed. The naturally occurring pathophysiological process of hypoxia appeared to entail fundamental relevance for periodontal defense and regeneration.
Background: Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are innate, damage-associated molecular patterns (DAMP) sensors. Their expressions in human periodontal resident cells and reactions toward irritations, such as hypoxia and lipopolysaccharide (LPS), remain not well characterized. This cross-sectional study aimed to investigate and characterize TLRs, NOD1/2 and NLRP1/2 expressions at the dento-gingival junction. Methods: Immunohistochemistry screening was carried out on periodontal tissue biopsies sections, while selected DAMP sensors signal and protein expression under Escherichia coli LPS (2 µg/mL) and/or hypoxia (1% O2), 24 h, by human gingival keratinocytes (HGK) or fibroblasts (HGF) were investigated. Results: Positive TLR1/2/4/5/6, NOD1/2 and NLRP1/2 immunostaining were observed in healthy and periodontitis biopsies with apparently more pocket epithelial cells positive for TLR2, TLR4 and NOD1/2. TLR1-6, NOD1/2 and NLRP1/2 messengers were detected in gingival/periodontal biopsies as well as healthy HGK and HGF explants. LPS and/or hypoxia induced signals and protein upregulation of NOD2 in HGKs or TLR1/6 and NOD2 in HGFs. Conclusion: Transcripts and proteins of TLR1/2/4/5/6, NOD1/2 and NLRP1/2 were expressed in human periodontal tissue in health and disease. Putting all observations together, NOD2, perhaps with TLR1/2/4/6, might be considered key, damage-associated molecular pattern sensors on periodontal resident cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.