Hepatitis B virus (HBV) infection is the main risk factor for the development of hepatocellular carcinoma (HCC), the most common type of liver cancer, with high incidence and mortality worldwide. Surgery, liver transplantation, and ablation therapies have been used to treat early HBV-caused HCC (HBV-HCC); meanwhile, in the advanced stage, chemoradiotherapy and drug-targeted therapy are regularly considered, but with limited efficacy. Recently, immunotherapies, such as tumor vaccine therapy, adoptive cell transfer therapy, and immune checkpoint inhibitor therapy, have demonstrated promising efficacy in cancer treatment. In particular, immune checkpoint inhibitors can successfully prevent tumors from achieving immune escape and promote an anti-tumor response, thereby boosting the therapeutic effect in HBV-HCC. However, the advantages of immune checkpoint inhibitors in the treatment of HBV-HCC remain to be exploited. Here, we describe the basic characteristics and development of HBV-HCC and introduce current treatment strategies for HBV-HCC. Of note, we review the principles of immune checkpoint molecules, such as programmed cell death protein 1(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in HBV-HCC, as well as related inhibitors being considered in the clinic. We also discuss the benefits of immune checkpoint inhibitors in the treatment of HBV-HCC and the efficacy of those inhibitors in HCC with various etiologies, aiming to provide insights into the use of immune checkpoint inhibitors for the treatment of HBV-HCC.
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
The catenin beta 1 gene (CTNNB1) plays a crucial role in the malignant progression of various cancers. Emerging studies have suggested that its hyperactivation is closely related to the occurrence and development of bladder cancer(BCa). Here, we report that UCHL3(Ubiquitin C-terminal hydrolase L3), a deubiquitinating enzyme promotes the development of bladder cancer through Wnt signaling pathway by interacting with and stabilizing CTNNB1 in vitro and in vivo. GSEA analysis showed that UCHL3 was highly associated with Wnt signaling pathway, and it was validated by luciferase reporter assays and RT-PCR, which found that its functions depend on its deubiquitinating activity. We also found that the overexpression of UCHL3 boosted the bladder cancer cells proliferation, invasion and migration, while the depletion of UCHL3 in bladder cancer cells delayed the tumor tumorigenesis in vitro and in vivo. Especially, Uchl3-deficient mice were less susceptible to bladder tumorigenesis. Additionally, UCHL3 was highly expressed in bladder cancer and associated with advanced clinicopathological parameters. These findings provided direct insight into the molecular mechanism of the functions of UCHL3 in bladder cancer, and provided new target for therapeutic approach against bladder cancer.
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation clearly inhibits colorectal tumorigenesis by targeting the MAPK/JNK signaling cascade in vitro and in vivo. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.