PurposeThe aim of the present study was to investigate the effect of knockdown and knockout of the transcriptional co-activator with PDZ-binding motif (TAZ) on the migration, invasion and autophagy of the hepatocellular carcinoma (HCC) cell lines, as well as the functional connection between the autophagy and cell migratory processes induced by loss of TAZ in HCC cell lines.MethodsHCC cell lines SMMC-7721 and SK-HEP1 stably knockdown and knockout of TAZ were established by the lentiviral-mediated TAZ knockdown and knockout approaches. Reverse transcription-quantitative real-time polymerase chain reaction and Western blotting were performed to examine the expression of TAZ and indicated genes in downstream pathways in HCC cell lines. Transwell assay and autophagic flux assay were used to evaluate the effect of TAZ knockdown and knockout on the motility and the autophagy of HCC cell lines.ResultsWe initially found that TAZ exhibited highly abundant and was expressed predominantly in HCC cell lines with different spontaneous metastatic potential. Through performing loss-of-function assays, we demonstrated that both TAZ knockdown and knockout promoted HCC cell autophagy and reduced HCC cell migration, invasion and epithelial-to-mesenchymal transition. In addition, autophagy inhibition in TAZ knockdown and knockout SMMC-7721 and SK-HEP1 cells in the presence of 3-methyladenine or chloroquine partially abrogated the migratory and invasive ability induced by TAZ knockdown and knockout.ConclusionOur findings indicated that loss of TAZ in HCC cells suppressed cell motility probably via altering the autophagy, suggesting that TAZ emerges as an important target in regulating cell motility and autophagy in HCC cells, and blocking TAZ may be a novel therapeutic strategy against HCC.
Keloid is an extremely common and often overlooked benign neoplastic disease, but its consequences should not be underestimated. Therefore, a deep exploration of the pathological mechanism of keloid becomes very essential. After 22 samples were collected from each patient's keloid tissues and normal skin tissues, circ_0008450 and Runx3 expression was tested by qRT-PCR. When primary human keratinized epithelial cells were transfected by sh-circ_0008450 or sh-Runx3, cell proliferation, apoptosis, migration, and EMT process were assessed by CCK-8, BrdU assay, apoptosis assay, migration assay, and Western blot. Finally, transfection was performed to explore the effect of circ_0008450 on the TGF-β/Smad signal pathway by adopting western blot. Circ_0008450 was highly expressed in keratinized epithelial tissues. After the transfection of sh-circ_0008450 into primary human keratinized epithelial cells, cell proliferation, migration, and EMT process were inhibited, and apoptosis was stimulated. Moreover, circ_0008450 silence-induced above changes were partly reversed by transfecting sh-Runx3. In addition, transfecting sh-circ _0008450 could repress TGF-β/Smad pathway, while transfecting sh-Runx3 activated the above pathway. Circ_0008450 down-regulated Runx3 to promote the proliferation and EMT process of human keratinized epithelial cells. This discovery may be related to the activation of the TGF-β/ Smad pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.