Accurate detection and analysis of arsenic pollutants are an important means to enhance the ability to manage arsenic pollution. Infrared (IR) spectroscopy technology has the advantages of fast analysis speed, high resolution, and high sensitivity and can be monitored by real‐time in situ analysis. This paper reviews the application of IR spectroscopy in the qualitative and quantitative analysis of inorganic and organic arsenic acid adsorbed by major minerals such as ferrihydrite (FH), hematite, goethite, and titanium dioxide. The IR spectroscopy technique cannot only identify different arsenic contaminants but also obtain the content and adsorption rate of arsenic contaminants in the solid phase. The reaction equilibrium constants and the degree of reaction conversion can be determined by constructing adsorption isotherms or combining them with modeling techniques. Theoretical calculations of IR spectra of mineral adsorbed arsenic pollutant systems based on density functional theory (DFT) and analysis and comparison of the measured and theoretically calculated characteristic peaks of IR spectra can reveal the microscopic mechanism and surface chemical morphology of the arsenic adsorption process. This paper systematically summarizes the qualitative and quantitative studies and theoretical calculations of IR spectroscopy in inorganic and organic arsenic pollutant adsorption systems, which provides new insights for accurate detection and analysis of arsenic pollutants and arsenic pollution control. Practitioner Points This paper reviews the application of infrared spectroscopy in the qualitative and quantitative analyses of inorganic and organic arsenic acid adsorbed by major minerals such as ferrihydrite, hematite, goethite, and titanium dioxide, which can help identify and evaluate the type and concentration of arsenic pollutants in water bodies. In this paper, theoretical calculations of infrared spectra of mineral adsorbed arsenic pollutant systems based on density functional theory reveal the adsorption mechanism of arsenic pollutants in water at the solid–liquid interface and help to develop targeted arsenic pollution control technologies. This paper provides a new and reliable analytical detection technique for the study of arsenic contaminants in water bodies.
Arsenic pollution in groundwater is serious in many areas of the world. The interaction between arsenic, iron, and organic matter has an important impact on the transformation and transportation of arsenic in groundwater. This review summarizes work in three areas including 1. interaction between different types of organic matter and arsenic, which forms arsenic-organic matter complexes through ligand exchange; 2. oxidation-reduction reaction of organic matter and iron-containing minerals, and the formation of complexes between organic matter and iron ions; and 3. formation of ternary complexes of organic matter, arsenic and iron-containing minerals (connected by iron ion bridges), and their characterization methods. This review has great theoretical and applied value for the discovery of the mechanism of arsenic pollution and the development of arsenic pollution control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.