Objective: Hepatocellular carcinoma (HCC) has become the second most common tumor type that contributes to cancer-related death worldwide. The study aimed to establish a robust immune-related gene pair (IRGP) signature for predicting the prognosis of HCC patients. Methods: Two RNA-seq datasets (The Cancer Genome Atlas Program and International Cancer Genome Consortium) and one microarray dataset (GSE14520) were included in this study. We used a series of immune-related genes from the ImmPort database to construct gene pairs. Lasso penalized Cox proportional hazards regression was employed to develop the best prognostic signature. We assigned patients into two groups with low immune risk and high immune risk. Then, the prognostic ability of the signature was evaluated by a log-rank test and a Cox proportional hazards regression model. Results: After 1000 iterations, the 33-immune gene pair model obtained the highest frequency. As a result, we chose the 33 immune gene pairs to establish the immunerelated prognostic signature. As we expected, the immune-related signature accurately predicted the prognosis of HCC patients, and high-risk groups showed poor prognosis in the training datasets and testing datasets as well as in the validation datasets. Furthermore, the immune-related gene pair (IRGP) signature also showed higher predictive accuracy than three existing prognostic signatures. Conclusion: Our prognostic signature, which reflects the link between the immune microenvironment and HCC patient outcome, is promising for prognosis prediction in HCC.
The extracellular matrix component periostin is a secreted protein that functions as both a cell attachment protein and an autocrine or paracrine factor that signals through the cell adhesion molecule integrins αvβ3 and αvβ5. Periostin participates in normal physiological activities such as cardiac development, but is also involved in pathophysiological processes in vascular diseases, wound repair, bone formation, and tumor development. It is of increasing interest in tumor biology because it is frequently overexpressed in a variety of epithelial carcinomas and is functionally involved in multiple steps of metastasis progression. These include the maintenance of stemness, niche formation, EMT, the survival of tumor cells, and angiogenesis, all of which are indispensable for gastric cancer metastasis. Periostin has been reported to activate the PI-3K/AKT, Wnt, and FAK-mediated signaling pathways to promote metastasis. Therefore, periostin represents a potentially promising candidate for the inhibition of metastasis. In this review article, we summarize recent advances in knowledge concerning periostin, its antagonist PNDA-3, and their influence on such key processes in cancer metastasis as maintenance of stemness, niche formation, epithelial-to-mesenchymal transition, tumor cell survival, and angiogenesis. In particular, we focus our attention on the role of periostin in gastric cancer metastasis, speculate as to the usefulness of periostin as a therapeutic and diagnostic target for gastric cancer metastasis, and consider potential avenues for future research.
MicroRNAs (miRNAs) are dysregulated in human ovarian carcinoma (OC). But the mechanism underlying miR-10a-5p in regulating the progression of OC need deeply explored. In the current study, we observed that miR-10a-5p was down-expressed in OC samples and OC cell lines. In addition, miR-10a-5p restrained the viability, colony formation, migration ability and invasiveness of OC cells. We further ascertained Homeobox A1 (HOXA1) was a downstream gene of miR-10a-5p. Furthermore, HOXA1 was distinctly upregulated in OC samples. Finally, upregulation of HOXA1 abolished the suppressive effects of miR-10a-5p on OC cells. These observations suggested that miR-10a-5p suppressed the aggressive phenotypes of OC cells via regulating HOXA1.
Background Periosteum plays critical roles in de novo bone formation and fracture repair. Wnt16 has been regarded as a key regulator in periosteum bone formation. However, the role of Wnt16 in periosteum derived cells (PDCs) osteogenic differentiation remains unclear. The study goal is to uncover whether and how Wnt16 acts on the osteogenesis of PDCs. Methods We detected the variation of Wnt16 mRNA expression in PDCs, which were isolated from mouse femur and identified by flow cytometry, cultured in osteogenic medium for 14 days, then knocked down and over-expressed Wnt16 in PDCs to analysis its effects in osteogenesis. Further, we seeded PDCs (Wnt16 over-expressed/vector) in β-tricalcium phosphate cubes, and transplanted this complex into a critical size calvarial defect. Lastly, we used immunofluorescence, Topflash and NFAT luciferase reporter assay to study the possible downstream signaling pathway of Wnt16. Results Wnt16 mRNA expression showed an increasing trend in PDCs under osteogenic induction for 14 days. Wnt16 shRNA reduced mRNA expression of Runx2, collage type I (Col-1) and osteocalcin (OCN) after 7 days of osteogenic induction, as well as alizarin red staining intensity after 21days. Wnt16 also increased the mRNA expression of Runx2 and OCN and the protein production of Runx2 and Col-1 after 2 days of osteogenic stimulation. In the orthotopic transplantation assay, more bone volume, trabecula number and less trabecula space were found in Wnt16 over-expressed group. Besides, in the newly formed tissue Brdu positive area was smaller and Col-1 was larger in Wnt16 over-expressed group compared to the control group. Finally, Wnt16 upregulated CTNNB1/β-catenin expression and its nuclear translocation in PDCs, also increased Topflash reporter luciferase activity. By contrast, Wnt16 failed to increase NFAT reporter luciferase activity. Conclusion Together, Wnt16 plays a positive role in regulating PDCs osteogenesis, and Wnt16 may have a potential use in improving bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.