Severe acne is a chronic inflammatory skin disorder characterized by widespread inflammatory lesions including nodules, cysts and potential scarring. Here we perform the first genome-wide association study of severe acne in a Chinese Han population comprising 1,056 cases and 1,056 controls using the Illumina HumanOmniZhongHua-8 BeadChip. In an independent cohort of 1,860 cases and 3,660 controls of Chinese Han, we replicate 101 SNPs of which 3 showed consistent association. We identify two new susceptibility loci at 11p11.2 (DDB2, rs747650, P combined ¼ 4.41 Â 10 À 9 and rs1060573, P combined ¼ 1.28 Â 10 À 8 ) and 1q24.2 (SELL, rs7531806, P combined ¼ 1.20 Â 10 À 8 ) that are involved in androgen metabolism, inflammation processes and scar formation in severe acne. These results point to new genetic susceptibility factors and suggest several new biological pathways related to severe acne.
Streptococcus pneumoniae (S.pneumoniae) is a major human pathogen causing morbidity and mortality worldwide. Efficiently acquiring iron from the environment is critical for S. pneumoniae to sustain growth and cause infection. There are only three known iron-uptake systems in Streptococcal species responsible for iron acquisition from the host, including ABC transporters PiaABC, PiuABC, and PitABC. Besides, no other iron-transporting system has been suggested. In this work, we employed our newly established translating mRNA analysis integrated with proteomics to evaluate the possible existence of novel iron transporters in the bacterium. We simultaneously deleted the iron-binding protein genes of the three iron-uptake systems to construct a piaA/piuA/pitA triple mutant (Tri-Mut) of S. pneumoniae D39, in which genes and proteins related to iron transport should be regulated in response to the deletion. With ribosome associated mRNA sequencing-based translatomics focusing on translating mRNA and iTRAQ quantitative proteomics based on the covalent labeling of peptides with tags of varying mass, we indeed observed a large number of genes and proteins representing various coordinated biological pathways with significantly altered expression levels in the Tri-Mut mutant. Highlighted in this observation is the identification of several new potential iron-uptake ABC transporters participating in iron metabolism of Streptococcus. In particular, putative protein SPD_1609 in operon 804 was verified to be a novel iron-binding protein with similar function to PitA in S. pneumoniae. These data derived from the integrative translatomics and proteomics analyses provided rich information and insightful clues for further investigations on iron-transporting mechanism in bacteria and the interplay between Streptococcal iron availability and the biological metabolic pathways.
Gene fusion is one of the hallmarks of cancer. Recent advances in RNA-seq of cancer transcriptomes have facilitated the discovery of fusion transcripts. In this study, we report identification of a surprisingly large number of fusion transcripts, including six KANSARL (KANSL1-ARL17A) transcripts that resulted from the fusion between the KANSL1 and ARL17A genes using a RNA splicingcode model. Five of these six KANSARL fusion transcripts are novel. By systematic analysis of RNA-seq data of glioblastoma, prostate cancer, lung cancer, breast cancer, and lymphoma from different regions of the World, we have found that KANSARL fusion transcripts were rarely detected in the tumors of individuals from Asia or Africa. In contrast, they exist in 30 -52% of the tumors from North Americans cancer patients. Analysis of CEPH/ Utah Pedigree 1463 has revealed that KANSARL is a familially-inherited fusion gene. Further analysis of RNA-seq datasets of the 1000 Genome Project has indicated that KANSARL fusion gene is specific to 28.9% of the population of European ancestry origin. In summary, we demonstrated that KANSARL is the first cancer predisposition fusion gene associated with genetic backgrounds of European ancestry origin.
The aim of metalloproteomics is to identify and characterize putative metal-binding proteins and metal-binding motifs. In this study, we performed a systematical metalloproteomic analysis on Streptococcus pneumoniae through the combined use of efficient immobilized metal affinity chromatography enrichment and high-accuracy linear ion trap-Orbitrap MS to identify metal-binding proteins and metal-binding peptides. In total, 232 and 166 putative metal-binding proteins were respectively isolated by Cu- and Zn-immobilized metal affinity chromatography columns, in which 133 proteins were present in both preparations. The putative metalloproteins are mainly involved in protein, nucleotide and carbon metabolisms, oxidation and cell cycle regulation. Based on the sequence of the putative Cu- and Zn-binding peptides, putative Cu-binding motifs were identified: H(X)mH (m=0-11), C(X)(2) C, C(X)nH (n=2-4, 6, 9), H(X)iM (i=0-10) and M(X)tM (t=8 or 12), while putative Zn-binding motifs were identified as follows: H(X)mH (m=1-12), H(X)iM (i=0-12), M(X)tM (t=0, 3 and 4), C(X)nH (n=1, 2, 7, 10 and 11). Equilibrium dialysis and inductively coupled plasma-MS experiments confirmed that the artificially synthesized peptides harboring differential identified metal-binding motifs interacted directly with the metal ions. The metalloproteomic study presented here suggests that the comparably large size and diverse functions of the S. pneumoniae metalloproteome may play important roles in various biological processes and thus contribute to the bacterial pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.