Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.
Research work on distinguishing humans from animals can help provide priority orders and optimize the distribution of resources in earthquake- or mining-related rescue missions. However, the existing solutions are few and their stability and accuracy of classification are less. This study proposes an accurate method for distinguishing stationary human targets from dog targets under through-wall condition based on ultra-wideband (UWB) radar. Eight humans and five beagles were used to collect 130 samples of through-wall signals using the UWB radar. Twelve corresponding features belonging to four categories were combined using the support vector machine (SVM) method. A recursive feature elimination (RFE) method determined an optimal feature subset from the twelve features to overcome overfitting and poor generalization. The results after ten-fold cross-validation showed that the area under the receiver operator characteristic (ROC) curve can reach 0.9993, which indicates that the two subjects can be distinguished under through-wall condition. The study also compared the ability of the proposed features of four categories when used independently in a classifier. Comparison results indicated that wavelet entropy-corresponding features among them have the best performance. The method and results are envisioned to be applied in various practical situations, such as post-disaster searching, hostage rescues, and intelligent homecare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.