Circular RNAs (circRNAs) are a novel class of non-coding RNA molecules ubiquitously present in the cytoplasm of eukaryotic cells. CircRNAs are generated from exons or introns via multiple mechanisms. A recently identified circRNA, ciRS-7, can regulate the activities of miRNAs, mRNAs, and RBP to exert specific biological effects. Also, ciRS-7 acts as a natural competing endogenous RNA, a.k.a. 'super sponge' of microRNA-7 (miR-7) that sequesters and competitively inhibits the activity of miR-7. This competition between ciRS-7 and miR-7 may have profound effects on oncogenesis. This review will summarize the origin and functions of ciRS-7 and discuss the relationship among ciRS-7, its target molecules and cancer.
Circular ribonucleic acids (circRNAs), which are a type of covalently closed circular RNA, are receiving increasing attention. An increasing amount of evidence suggests that circRNAs are involved in the biogenesis and development of multiple diseases such as digestive system cancers. Dysregulated circRNAs have been found to act as oncogenes or tumour suppressors in digestive system cancers. Moreover, circRNAs are related to ageing and a wide variety of processes in tumour cells, such as cell apoptosis, invasion, migration, and proliferation. Moreover, circRNAs can perform a remarkable multitude of biological functions, such as regulating splicing or transcription, binding RNA-binding proteins to enable function, acting as microRNA (miRNA) sponges, and undergoing translated into proteins. However, in digestive system cancers, circRNAs function mainly as miRNA sponges. Herein, we summarise the latest research progress on biological functions of circRNAs in digestive system cancers. This review serves as a synopsis of potential therapeutic targets and biological markers for digestive system cancer.
In this paper, two kinds of titanium surfaces with novel micro/nano hierarchical structures, namely Etched (E) surface and Sandblast and etched (SE) surface, were successfully fabricated by NH4OH and H2O2 mixture. And their cellular responses of MG63 were investigated compared with Sandblast and acid-etching (SLA) surface. Scanning electron microscope (SEM), Surface profiler, X-ray photoelectron spectroscopy (XPS), and Contact angle instrument were employed to assess the surface morphologies, roughness, chemistry and wettability respectively. Hierarchical structures with micro holes of 10–30 μm in diameter and nano pits of tens of nanometers in diameter formed on both E and SE surfaces. The size of micro holes is very close to osteoblast cell, which makes them wonderful beds for osteoblast. Moreover, these two kinds of surfaces possess similar roughness and superior hydrophilicity to SLA. Reactive oxygen species were detected on E and SE surface, and thus considerable antimicrobial performance and well fixation can be speculated on them. The cell experiments also demonstrated a boost in cell attachment, and that proliferation and osteogenic differentiation were achieved on them, especially on SE surface. The results indicate that the treatment of pure titanium with H2O2/NH4OH is an effective technique to improve the initial stability of implants and enhance the osseointegration, which may be a promising surface treatment to titanium implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.