Combination therapeutic regimen is becoming a primary direction for current cancer immunotherapy to broad the antitumor response. Functional nanomaterials offer great potential for steady codelivery of various drugs, especially small molecules, therapeutic peptides, and nucleic acids, thereby realizing controllable drug release, increase of drug bioavailability, and reduction of adverse effects. Herein, a therapeutic peptide assembling nanoparticle that can sequentially respond to dual stimuli in the tumor extracellular matrix was designed for tumor-targeted delivery and on-demand release of a short d-peptide antagonist of programmed cell death-ligand 1 (PPA-1) and an inhibitor of idoleamine 2,3-dioxygenase (NLG919). By concurrent blockade of immune checkpoints and tryptophan metabolism, the nanoformulation increased the level of tumor-infiltrated cytotoxic T cells and in turn effectively inhibited melanoma growth. To achieve this, an amphiphilic peptide, consisting of a functional 3-diethylaminopropyl isothiocyanate (DEAP) molecule, a peptide substrate of matrix metalloproteinase-2 (MMP-2), and PPA-1, was synthesized and coassembled with NLG919. The nanostructure swelled when it encountered the weakly acidic tumor niche where DEAP molecules were protonated, and further collapsed due to the cleavage of the peptide substrate by MMP-2 that is highly expressed in tumor stroma. The localized release ofPPA-1 and NLG919 created an environment which favored the survival and activation of cytotoxic T lymphocytes, leading to the slowdown of melanoma growth and increase of overall survival. Together, this study offers new opportunities for dual-targeted cancer immunotherapy through functional peptide assembling nanoparticles with design features that are sequentially responsive to the multiple hallmarks of the tumor microenvironment.
Pancreatic ductal adenocarcinoma is characterised by a dense desmoplastic stroma composed of stromal cells and extracellular matrix (ECM). This barrier severely impairs drug delivery and penetration. Activated pancreatic stellate cells (PSCs) play a key role in establishing this unique pathological obstacle, but also offer a potential target for anti-tumour therapy. Here, we construct a tumour microenvironment-responsive nanosystem, based on PEGylated polyethylenimine-coated gold nanoparticles, and utilise it to co-deliver all-trans retinoic acid (ATRA, an inducer of PSC quiescence) and siRNA targeting heat shock protein 47 (HSP47, a collagen-specific molecular chaperone) to re-educate PSCs. The nanosystem simultaneously induces PSC quiescence and inhibits ECM hyperplasia, thereby promoting drug delivery to pancreatic tumours and significantly enhancing the anti-tumour efficacy of chemotherapeutics. Our combination strategy to restore homoeostatic stromal function by targeting activated PSCs represents a promising approach to improving the efficacy of chemotherapy and other therapeutic modalities in a wide range of stroma-rich tumours.
An effective tumor vaccine vector that can rapidly display neoantigens is urgently needed. Outer membrane vesicles (OMVs) can strongly activate the innate immune system and are qualified as immunoadjuvants. Here, we describe a versatile OMV-based vaccine platform to elicit a specific anti-tumor immune response via specifically presenting antigens onto OMV surface. We first display tumor antigens on the OMVs surface by fusing with ClyA protein, and then simplify the antigen display process by employing a Plug-and-Display system comprising the tag/catcher protein pairs. OMVs decorated with different protein catchers can simultaneously display multiple, distinct tumor antigens to elicit a synergistic antitumour immune response. In addition, the bioengineered OMVs loaded with different tumor antigens can abrogate lung melanoma metastasis and inhibit subcutaneous colorectal cancer growth. The ability of the bioengineered OMV-based platform to rapidly and simultaneously display antigens may facilitate the development of these agents for personalized tumour vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.