The antioncogenic Chk2 kinase plays a crucial role in DNA damage-induced cell-cycle checkpoint regulation. Here we show that Chk2 associates with the oncogenic protein Wip1 (wild-type p53-inducible phosphatase 1) (PPM1D), a p53-inducible protein phosphatase. Phosphorylation of Chk2 at threonine68 (Thr68), a critical event for Chk2 activation, which is normally induced by DNA damage or overexpression of Chk2, is inhibited by expression of wild-type (WT), but not a phosphatase-deficient mutant (D314A) of Wip1 in cultured cells. Furthermore, an in vitro phosphatase assay revealed that Wip1 (WT), but not Wip1 (D314A), dephosphorylates Thr68 on phosphorylated Chk2 in vitro, resulting in the inhibition of Chk2 kinase activity toward glutathione S-transferase-Cdc25C. Moreover, inhibition of Wip1 expression by RNA interference results in abnormally sustained Thr68 phosphorylation of Chk2 and increased susceptibility of cells in response to DNA damage, indicating that Wip1 acts as a negative regulator of Chk2 in response to DNA damage.
). Here, we performed structure-function analyses of Chk2 and Wip1 by using a series of deletion or amino acid-substituted mutant proteins of Chk2 and Wip1. We show that nuclear localization of both Chk2 and Wip1 is required for their association in cultured cells and that the serine-glutamine (SQ)/threonine-glutamine (TQ) domain of Chk2, containing Thr-68, and the N-terminal domain of Wip1, comprising about 100 amino acids, are necessary and sufficient for the association of both molecules. However, it was found that an intrinsic kinase activity of Chk2, but not phosphatase activity of Wip1, is required for the association of fulllength Chk2 and Wip1. Interestingly, we also show that the mutant Wip1 proteins, bearing the N-terminal domain of Wip1 alone or lacking an intrinsic phosphatase activity, exhibit dominant negative effects on the functions of the wild-type Wip1, i.e. ectopic expression of either of these Wip1 mutants inhibits dephosphorylation of Thr-68 in Chk2 by Wip1 and anti-apoptotic function of Wip1. These results provide a molecular basis for developing novel anti-cancer drugs, targeting oncogenic Wip1 phosphatase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.