Methamphetamine (Meth) is an addictive psychostimulant abused worldwide. Ample evidence indicate that chronic abuse of Meth induces neurotoxicity via microglia-associated neuroinflammation and the activated microglia present in both Meth-administered animals and human abusers. The development of anti-neuroinflammation as a therapeutic strategy against Meth dependence promotes research to identify inflammatory pathways that are specifically tied to Meth-induced neurotoxicity. Currently, the exact mechanisms for Meth-induced microglia activation are largely unknown. NLRP3 is a well-studied cytosolic pattern recognition receptor (PRR), which promotes the assembly of the inflammasome in response to the danger-associated molecular patterns (DAMPs). It is our hypothesis that Meth activates NLRP3 inflammasome in microglia and promotes the processing and release of interleukin (IL)-1β, resulting in neurotoxic activity. To test this hypothesis, we studied the effects of Meth on IL-1β maturation and release from rat cortical microglial cultures. Incubation of microglia with physiologically relevant concentrations of Meth after lipopolysaccharide (LPS) priming produced an enhancement on IL-1β maturation and release. Meth treatment potentiated aggregation of inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), induced activation of the IL-1β converting enzyme caspase-1 and produced lysosomal and mitochondrial impairment. Blockade of capase-1 activity, lysosomal cathepsin B activity or mitochondrial ROS production by their specific inhibitors reversed the effects of Meth, demonstrating an involvement of inflammasome in Meth-induced microglia activation. Taken together, our results suggest that Meth triggers microglial inflammasome activation in a manner dependent on both mitochondrial and lysosomal danger-signaling pathways.
Osteoclasts (OCs) are bone‐resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild‐type (WT) mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C− monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8‐deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis‐regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Osteoclasts (OCs) are bone resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type mice, Ly6C hi and Ly6C int monocytes are the primary source of OC formation when compared to Ly6Cmonocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of pre-established transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of IRF8, a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8 deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation.Service for assistance with cell sorting. We thank Satish Yesupatham from University of Maryland School of Dentistry for assistance with FACS. We thank Kim C. Mansky from University of Minnesota for critically reviewing this manuscript. Funding sources: R00DE028439 to V.T.M.; start-up funds from Univ. of Maryland School of Dentistry to V.T.M.;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.