The major oncogenic driver of acute promyelocytic leukemia (APL) is the fusion protein PML-RARα originated from the chromosomal translocation t(15;17). All-trans retinoic acid (ATRA) and arsenic trioxide cure most patients by directly targeting PML-RARα. However, major issues including the resistance of ATRA and arsenic therapy still remain in APL clinical management. Here we showed that compound Z-10, a nitro-ligand of retinoid X receptor α (RXRα), strongly promoted the cAMP-independent apoptosis of both ATRA- sensitive and resistant NB4 cells via the induction of caspase-mediated PML-RARα degradation. RXRα was vital for the stability of both PML-RARα and RARα likely through the interactions. The binding of Z-10 to RXRα dramatically inhibited the interaction of RXRα with PML-RARα but not with RARα, leading to Z-10's selective induction of PML-RARα but not RARα degradation. Z-36 and Z-38, two derivatives of Z-10, had improved potency of inducing PML-RARα reduction and NB4 cell apoptosis. Hence, RXRα ligand Z-10 and its derivatives could target both ATRA- sensitive and resistant APL cells through their distinct acting mechanism, and are potential drug leads for APL treatment.
SARS-CoV-2 and its variants, with the Omicron subvariant XBB currently prevailing the global infections, continue to pose threats on public health worldwide. This non-segmented positive-stranded RNA virus encodes the multi-functional nucleocapsid protein (N) that plays key roles in viral infection, replication, genome packaging and budding. N protein consists of two structural domains, NTD and CTD, and three intrinsically disordered regions (IDRs) including the NIDR, the serine/arginine rich motif (SRIDR), and the CIDR. Previous studies revealed functions of N protein in RNA binding, oligomerization, and liquid–liquid phase separation (LLPS), however, characterizations of individual domains and their dissected contributions to N protein functions remain incomplete. In particular, little is known about N protein assembly that may play essential roles in viral replication and genome packing. Here, we present a modular approach to dissect functional roles of individual domains in SARS-CoV-2 N protein that reveals inhibitory or augmented modulations of protein assembly and LLPS in the presence of viral RNAs. Intriguingly, full-length N protein (NFL) assembles into ring-like architecture whereas the truncated SRIDR-CTD-CIDR (N182-419) promotes filamentous assembly. Moreover, LLPS droplets of NFL and N182-419 are significantly enlarged in the presence of viral RNAs, and we observed filamentous structures in the N182-419 droplets using correlative light and electron microscopy (CLEM), suggesting that the formation of LLPS droplets may promote higher-order assembly of N protein for transcription, replication and packaging. Together this study expands our understanding of the multiple functions of N protein in SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.