Background
N6-methyladenosine (m6A) modification is the most pervasive modification in mRNA, and has been considered as a new layer of epigenetic regulation on mRNA processing, stability and translation. Despite its functional significance in various physiological processes, the role of the m6A modification involved in breast cancer is yet fully understood.
Methods
We used the m6A-RNA immunoprecipitation sequencing to identify the potential targets in breast cancer. To determine the underlying mechanism for the axis of FTO-BNIP3, we performed a series of in vitro and in vivo assays in 3 breast cancer cell lines and 36 primary breast tumor tissues and 12 adjunct tissues.
Results
We showed that FTO, a key m6A demethylase, was up-regulated in human breast cancer. High level of FTO was significantly associated with lower survival rates in patients with breast cancer. FTO promoted breast cancer cell proliferation, colony formation and metastasis in vitro and in vivo. We identified BNIP3, a pro-apoptosis gene, as a downstream target of FTO-mediated m6A modification. Epigenetically, FTO mediated m6A demethylation in the 3’UTR of BNIP3 mRNA and induced its degradation via an YTHDF2 independent mechanism. BNIP3 acts as a tumor suppressor and is negatively correlated with FTO expression in clinical breast cancer patients. BNIP3 dramatically alleviated FTO-dependent tumor growth retardation and metastasis.
Conclusions
Our findings demonstrate the functional significance of the m6A modification in breast cancer, and suggest that FTO may serve as a novel potential therapeutic target for breast cancer.
Electronic supplementary material
The online version of this article (10.1186/s12943-019-1004-4) contains supplementary material, which is available to authorized users.
Colorectal cancer pathogenesis remains incompletely understood. Here, we report that the heterochromatin protein HP1g is upregulated commonly in human colorectal cancer, where it promotes cell proliferation in vitro and in vivo. Gene-expression and promoter-binding experiments demonstrated that HP1g directly regulated CDKN1A (p21 Waf1/Cip1 ) in a manner associated with methylation of histone H3K9 on its promoter. We identified miR-30a as a tumor-suppressive microRNA that targets HP1g in vitro and in vivo to specifically suppress the growth of colorectal cancer in mouse xenograft models. MiR30a was widely downregulated in primary human colorectal cancer tissues, where its expression correlated inversely with high levels of HP1g protein. Our results identify a new miR-30a/HP1g/p21 regulatory axis controlling colorectal cancer development, which may offer prognostic and therapeutic opportunities. Cancer Res; 75(21); 4593-604. Ó2015 AACR.
We recently demonstrated that luminal factors such as osmolality, disaccharides, and mechanical stimulation evoke pancreatic secretion by activating 5-hydroxytryptamine subtype 3 (serotonin-3, 5-HT3) receptors on mucosal vagal afferent fibers in the intestine. We hypothesized that 5-HT released by luminal stimuli acts as a paracrine substance, activating the mucosal vagal afferent fibers to stimulate pancreatic secretion. In the in vivo rat model, luminal perfusion of maltose or hypertonic NaCl increased 5-HT level threefold in intestinal effluent perfusates. Similar levels were observed after intraluminal 10(-5) M 5-HT perfusion. These treatments did not affect 5-HT blood levels. In a separate study, intraduodenal, but not intraileal, 5-HT application induced a dose-dependent increase in pancreatic protein secretion, which was not blocked by the CCK-A antagonist CR-1409. Acute vagotomy, methscopolamine, or perivagal or intestinal mucosal application of capsaicin abolished 5-HT-induced pancreatic secretion. In conscious rats, luminal 10(-5) M 5-HT administration produced a 90% increase in pancreatic protein output, which was markedly inhibited by the 5-HT3 antagonist ondansetron. In conclusion, luminal stimuli induce 5-HT release, which in turn activates 5-HT3 receptors on mucosal vagal afferent terminals. In this manner, 5-HT acts as a paracrine substance to stimulate pancreatic secretion via a vagal cholinergic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.